From Observational Data to Information IG (OD2I IG)

The OD2I Team

tinyurl.com/y74p56tb

Tour de Table

(time permitted)

OD2I IG

- Primary data are interpreted for their meaning in determinate contexts
- Contexts relevant to science, industry, or society generally
- Within a context
 - Primary data are uninterpreted
 - Data interpretation results in meaningful data
 - Meaningful data is information
- Primary data thus evolve to become contextually meaningful information
- Information about the natural and human worlds of interest
- Advance understanding for how observational data evolve to information
- A platform for discussion and advancement on this subject matter

Status Update since Montreal (P10)

- Developed and submitted Charter
- Obtained TAB review
- Obtained RDA endorsement
- Regular monthly meetings
- What started at P8 in Denver with a BoF is now an IG
- Clap, clap, clap;>

Charter Overview

Motivation

- Frequent reference to the idea that information (knowledge) can be gained from data
- By various people, infrastructures, projects, etc. (including RDA P11!)
- Broad agreement this is true
- Little agreement on how this occurs and what data and information (knowledge) are

Specific concerns

- Socio-technical support for the extraction of information from primary data
- Systematic acquisition and curation of formal meaning of data
- Construction and maintenance of information and knowledge-based systems
- Further processing and use of information

Charter Overview: Objectives

- Identify, possibly develop, a reference conceptualization
 - Ground our understanding of the distinction of observational data and information
 - As well as the relevant activities and agents in between
- Engage stakeholders
 - Research communities, including individual researchers and ICT specialists
 - Research infrastructures, data infrastructures, data centers, e-Infrastructures
 - Other relevant RDA groups
 - Learn from a wide range of communities and practices
 - Devise solutions that are viable and practical across stakeholders
- Collect comparable use cases, solutions and challenges
 - Analyse use cases and develop solutions for unresolved challenges
 - Transfer solutions across stakeholders

Charter Overview: Outcomes

- Systematic acquisition of information by infrastructures
- Infrastructure to support data use as-a-service
- Information systems layered above current data systems
- Improved usability of data as information by both humans and machines

TAB Review (Positive)

- Very comprehensive charter and summary
- Well described demonstrating a sufficient expertise of the authors
- Topic well aligned with the RDA mission
- Worthwhile IG that is likely to add value to what is currently being done
- Outcomes are likely to lead to more meaningful data sharing and exchange

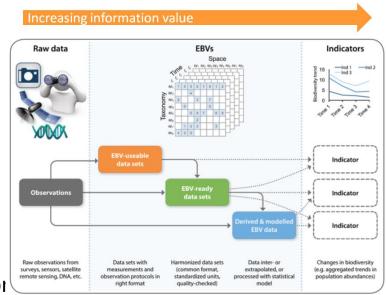
TAB Review (Improvements)

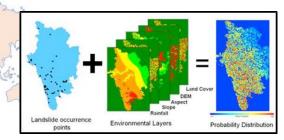
- Expansion of the membership, both geographically and in discipline expertise
- References to activities in other continents are missing
- Further external organizational outreach
- Involve GEO BON and aerosol scientists (for use cases)
- Number discrepancy between those who signed the charter and signed up

IDW session

"From Data to Knowledge: A Policy Perspective"

Biodiversity & Conservation Science: Summary


Essential Biodiversity Variables (EBVs) are conceptually positioned between raw data (i.e. primary data observations) and indicators (synthetic indices for reporting change)

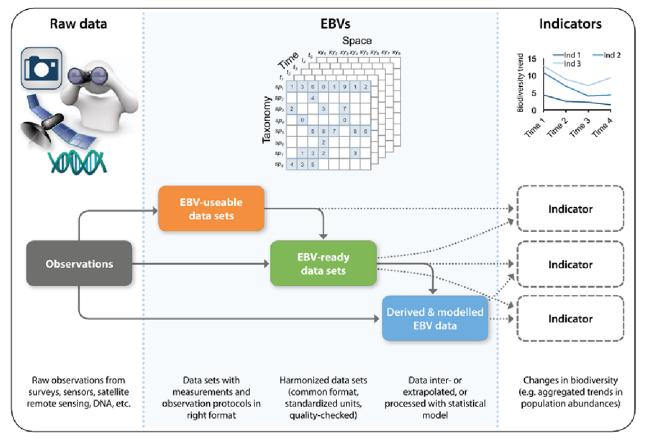

Information for a purpose: Understanding and reporting biodiversity change (science, policy, management)

Observational data: Structured primary biodiversity observations (EBV-useable data)

Information: EBV-ready data permit: i) analysis of, for example invasiveness; ii) other derived information products

Activity: Interpreting EBV-usable and EBV-ready data with expert knowledge and statistical models

Essential Biodiversity Variables for species distribution and abundance


A Use Case in Biodiversity and Conservation Science

(use case document: https://goo.gl/U98Tj8 article: Kissling et al. 2018, doi: 10.1111/brv.12359)

Increasing information value

What are EBV's

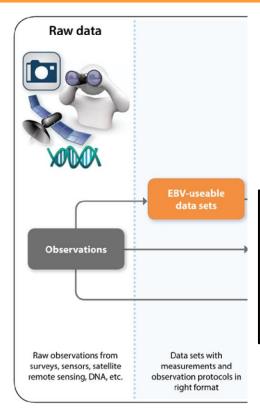
- **Essential Biodiversity** Variables (EBVs) are part of an information supply chain, conceptually positioned between raw data (i.e. primary data observations) and indicators (synthetic indices for reporting change)
- Information for a purpose:
 Understanding and reporting biodiversity change (science, policy,

Observations / primary data

Example:

Measurements and observations in many formats

Surveys, sensors, satellites, DNA, etc.


Raw data Observations

Raw observations from surveys, sensors, satellite remote sensing, DNA, etc.

1) Observations / primary data to EBV usable data

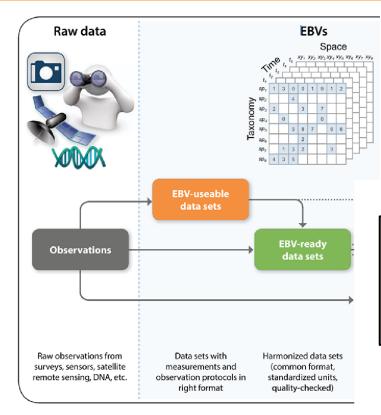
Measurements with comparable units, similar observation protocols

When raw data is structured, well-formed, based on comparable measurement units using similar observation protocols, it is usable for producing EBV data products

Activities

Discovery and retrieval from repositories

Filtering by key dimensions of taxonomy, time and space


Structuring and formatting

Involves applying expert knowledge and judgement

2) EBV usable data to EBV ready data

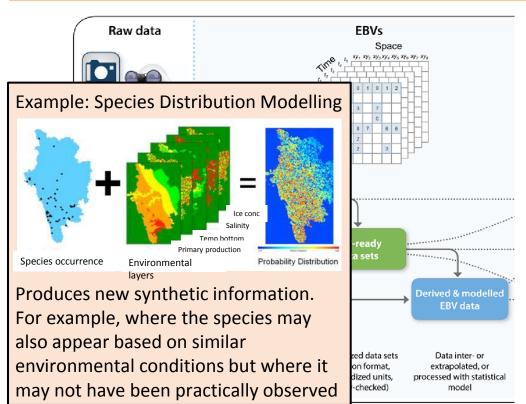
Harmonised datasets, common format, standardized units, quality-checked

Structuring, well-forming, packaging, adding 3rd-party detail

EBV ready data are usable information objects. They possess sufficient context and meaning

Activities

Assessing scientific compatibility and technical interoperability of data


Assessing legal interoperability of data (open access, licensing restrictions)

Applying quality control procedures and adding assertions e.g., on accuracy of geographical information; removing duplicates Combines automation with expert human judgement

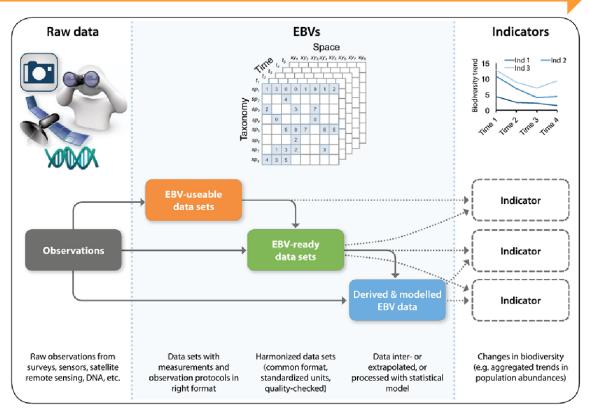
3) EBV ready data to derived & modelled EBV data

Derived from processing data with statistical models

Interpretational processing, modelling, etc.

Activities

Increasingly complex processing with higher level of human expert input also often needed


Recording processing steps (i.e., provenance), both human and machine readable

Derived & modelled EBV ready data can be used for gap-filling. They are also usable information objects

4) EBV data to indicators

e.g., quantifying spatiotemporal changes in distributions / abundances

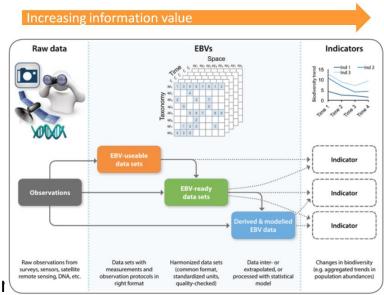
Synthesised from multiple sources by processing and interpretation

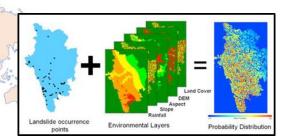
Activities

Synthesising indicators relevant to e.g., Aichi 2020 Biodiversity Targets, Sustainable Development Goals 2030, etc.

Quantifying uncertainty arising from combining data acquired by different methods

Biodiversity & Conservation Science: Summary


Essential Biodiversity Variables (EBVs) are conceptually positioned between raw data (i.e. primary data observations) and indicators (synthetic indices for reporting change)


Information for a purpose: Understanding and reporting biodiversity change (science, policy, management)

Observational data: Structured primary biodiversity observations (EBV-useable data)

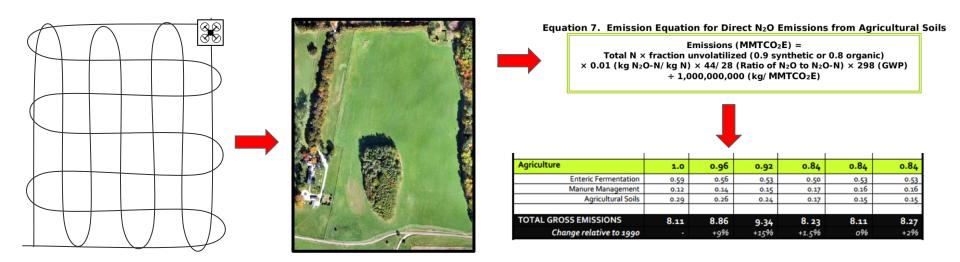
Information: EBV-ready data permit: i) analysis of, for example invasiveness; ii) other derived information products

Activity: Interpreting EBV-usable and EBV-ready data with expert knowledge and statistical models

Project partners:

- University of Amsterdam, NL
- Cardiff University, UK
- Gnubila, FR
- National Research Council, IT
- University of Alcala, ES
- Martin-Luther University Halle-Wittenberg, DE

Acknowledge global cooperation



Example: Scientific Unmanned Aircraft Systems

- Observational data: Multispectral Imagery
- Information: Manure Nutrient Management and Biomass Estimations
- Activity: Evaluation of agricultural soil climate change mitigation potential

Precision Agriculture

Observational data: Weather data including temperature and humidity

Precision Agriculture

- Observational data: Weather data including temperature and humidity
- Information: Descriptions for situations of (acute) outbreaks of pests in crops

Precision Agriculture

- Observational data: Weather data including temperature and humidity
- Information: Descriptions for situations of (acute) outbreaks of pests in crops
- Activity: Forecast disease pressure using a physically based model

Intelligent Transportation Systems

Observational data: Road pavement vibration

Intelligent Transportation Systems

- Observational data: Road pavement vibration
- Information: Descriptions of vehicles, their type, speed and driving direction

Intelligent Transportation Systems

- Observational data: Road pavement vibration
- Information: Descriptions of vehicles, their type, speed and driving direction
- Activity: Machine learning classification of vibration patterns

Work Plan

- OD2I IG kick-off session at Plenary 11 in Berlin
- Liaise with related RDA groups, and groups outside RDA (e.g. GEO/GEOSS)
- Develop the OD2I IG's reference conceptualization
- White paper on developed reference conceptualization
- Collect new use cases and align them with the reference conceptualization
- Analyse the use cases for commonalities and differences
- Identify and report common challenges
- Collect feedback from teams implementing use cases

Discussion

- What do the presented use cases have in common
- How to expand the membership
- Collaborations with other groups at RDA (e.g. VRE IG)
- New use cases proposed by audience
- Relevant activities in other continents
- Conceptual frameworks to consider