The TRUST Principles for Trustworthy Data Repositories – An Update

Dr. Dawei Lin, Ph.D.

Division of Allergy, Immunology, and Transplantation, NIAID, NIH
dawei.lin@nih.gov

RDA/WDS Repository Certification IG, September 12, 2019
Data is Value & Biological Data is Large

Growth of DNA Sequencing

Storage needs for Big Data in 2025:
- Astronomy – 1 ZB/year
- Twitter – 1 to 17 PB/year
- YouTube – 1 to 2 ZB/year
- Genomics – 2 to 40 ZB/year
Sharing Makes Data More Valuable

Benefits for individual researchers
- Increases visibility
- Increases usage
- Improves credibility
- Enhances discoverability
- Increases resources
- New collaboration opportunities
- Improves long-term archiving

Benefits for research communities
- Advances reproducibility
- Increases collaboration
- Enables replication
- Improves future research
- Improves links with industry

Benefits for society
- Enables public understanding
- Increases trust in research
- Increases understanding of research
- Promotes citizen science
- Increases innovation
- Eases access to research
- Economic benefits

SPRINGER NATURE
Benefits of Open Research Data

go.nature.com/opendata
FAIR principles: Trusting data management and stewardship

Findable
Accessible
Interoperable
Reusable
Measuring the Impact of the Digital Repositories

Interagency Workshop (2017) to identify current assessment metrics, tools, and methodologies that are effective in measuring the impact of digital data repositories.

Key Takeaways:

- A group with broad expertise and experience able to formulate and recommend best practices for data sharing and reuse.
- A data citation system that treats data as first-class objects comparable to publications in the research life cycle.
- **Data repository certification that is understandable and usable across a broad range of repositories.**
- New methods to assess economic impacts and opportunity costs when a repository is maintained or eliminated.
- A suite of strategies that repositories can use to achieve financial sustainability.

Longevity of 328 Biomedical Databases over 18 years

<table>
<thead>
<tr>
<th>Category</th>
<th>N</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alive</td>
<td>53</td>
<td>16.3%</td>
</tr>
<tr>
<td>Alive - rebranded</td>
<td>23</td>
<td>7.0%</td>
</tr>
<tr>
<td>Archived</td>
<td>47</td>
<td>14.4%</td>
</tr>
<tr>
<td>Dead</td>
<td>203</td>
<td>62.3%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>326</td>
<td>100%</td>
</tr>
</tbody>
</table>

Motivation

- Develop concise and measurable approaches to achieve Trustworthiness of Digital Repositories (TDR)
- Form an open forum to define TRUST with continued community feedback and consensus
- Not to replace the existing standards and best practices
- Provide a conceptual starting point for thinking about data life-cycle management and preservation
The Data Repository Ecosystem

- **Open Science, Open Data**
- **Data Sharing Policies & Directives**

Data Repository
- Rely on
- **TRUST Principles** (Preservation over time)
- **FAIR Data Principles** (At a certain time point)

Data Objects
- Contribute and use

Community
- **Data Citation Principles**

FAIR principles apply to the data objects.
TRUST principles apply to the data repositories.
The TRUST Principles

• **T - Transparency** is achieved by providing publicly accessible evidence of the services that a repository does and does not offer.

• **R - Responsibility** is a commitment to provide reliable data services.

• **U - User community** is a commitment to implement and enforce the standards and norm of the user community.

• **S - Sustainability** is the capability to support long-term data preservation and use.

• **T - Technology** is the infrastructure and capabilities to support the repository operations.
T- Transparency

Transparency: Publicly accessible data curation policies, capabilities and services

- T - Transparency is achieved by providing publicly accessible evidence of the services that a repository does and does not offer.
Responsibility: Accountable provision of data services for the user community

• R - Responsibility is a commitment to provide reliable data services.
U – User Community

Users: Enable current and future use of data in line with the norms of the community served

- **U - User community focused** is a commitment to implement and enforce the standards and norms of the user community.
S – Sustainability

Sustainability: Capability to continually facilitate long-term stewardship and use of data

- S - Sustainability is the capability to support long-term data preservation and use.
Technology: Ongoing advancement of secure, reliable tools, services and infrastructure

- T - Technology is the infrastructure and capabilities to support the repository operations.
Advantages of the TRUST Principles

• Offers common framework for evaluation of repositories.
• Like OAIS, generalizes trustworthiness beyond disciplinary data repositories
• Work in concert with other principles, such as the FAIR principles.
• Easily understandable guidance to communicating
Future Directions

• Mappings of TRUST principles to a range of relevant standards and practices, such as OAIS-ISO14721, TRAC/ISO16363, and CoreTrustSeal.
• Examples of trustworthy digital repositories
• Some form of logical elaboration of basic tenets of psychology.
Trustworthy Data Repositories for Biomedical Sciences

- April 8-9, 2019
- Chairs: Ingrid Dillo, John Westbrook
- Participants included:
 - Trustworthy certification experts
 - Repository managers
 - NIH staff
 - Online: government agencies, universities, industry, international
- Reach: 54 in person, 70 online

Workshop chairs used Mentimeter to engage participants

To which category of stakeholders do you belong?

- Funders and policy makers: 21
- Repository managers: 16
- Data experts/stewards/librarians: 14
- Researchers: 4

https://www.mentimeter.com/
Pre-discussion: assess concept familiarity

Were you already familiar with the concept of repository certification?

- Yes, very familiar: 13
- Yes, I have heard about it: 17
- No, I am not familiar with repository certification: 17
Assess essential TRUST concepts

What are the three keywords that would be important for you in the context of certification?
T – Transparency

Transparency is achieved by providing publicly accessible evidence of the services that a repository does and does not offer.

Key concepts discussed by workshop participants

- Data provenance
- Data curation
- Documentation of process and policy.
Responsibility is a commitment to provide reliable data services.

Key concepts discussed

- Responsibility is shared (data producers, institutions, funders, repositories, publishers, and data users).
- Data quality (validation, reproducibility).
- Education, communication, and stewardship.
- Building a culture of shared responsibility was thought to be critical to responsibility principle of TRUST.
User community is a commitment to provide and enforce the standards and norm of the user community.

Key concepts discussed

- Engagement, communication, collaboration, and service were identified as critical components this principle.
- Engaging and being responsive to user community needs is built on good communication and collaboration and reliable, responsive, and consistent service.
- User community is broad (data producers, funders, data users, and scientific community).
Sustainability is the capability to support long-term data preservation and use.

Key concepts discussed
- Funders, institutions, data users, data providers, and government, were identified as partners in achieving sustainability.
- Data is a shared resource requiring all partners to support that resource.
- Key issues were seen as long-term planning, funding models, business models, and prioritization.
Technology is the infrastructure and capabilities to support the repository operations.

Key concepts discussed

- Requires a commitment to infrastructure that incorporates reliability, flexibility, scalability, transferability, security and agility.
- Evolving resource as technology advances requires strong technologic expertise.
Acknowledgements

The suggestions for improving this work that were offered by several members of the CoreTrustSeal Standards and Certification Board and by participants of the Research Data Alliance Plenary 13 session, “Build TRUST to be FAIR - Emerging Needs of Certification in Life Sciences, Geosciences and Humanities”, which was convened by the RDA/WDS Certification of Digital Repositories Interest Group. We are grateful for thoughtful discussions from Shelley Stall, Maryann Martone (Professor Emeritus of Neuroscience UCSD) to write the version 0.01 of the White Paper.

The generous and insightful comments offered for version 0.01 from Robert S. Chen, Mark Conrad, Peter Doorn, Eliane Fankhauser, Elizabeth Hull, Siri Jodha Singh Khalsa, Micky Lindlar, and Limor Peer.