
A version of this paper was published in the Proceedings of SCREAM’15: The Science of Cyberinfrastructure: Research,
Experience, Applications and Models, June 16, 2015, Portland, Oregon, USA.

Lessons from industry for science cyberinfrastructure:
Simplicity, scale, and sustainability via SaaS/PaaS

Ian Foster
Computation Institute

 Department of Computer Science
 Mathematics and Computer Science Division

University of Chicago and Argonne National Laboratory
Chicago, IL 60637

foster@uchicago.edu

Abstract
Commercial information technology has changed dramatically
over the past decade, with profound consequences for both
software developers and software consumers. Software-as-a-
service (SaaS) enables remote use of powerful capabilities, from
accounting and payroll to weather alerts and transporation
logistics, that used to require expensive in-house facilities and
expertise. Platform-as-a-service (PaaS) offerings from cloud
providers simplify the development and operation of SaaS
software. These developments have slashed costs, reduced
barriers to access and entry, and spurred innovation. Science
cyberinfrastructure, in contrast, seems stuck in the 20th Century. I
discuss lessons from industry that the scientific community might
consider when designing cyberinfrastructure for the 21st Century.

1. The Cyberinfrastructure Challenge
Growing recognition of the transformative impact of ubiquitous
digital data, computational modeling, and communications on
scientific practice has spurred new cyberinfrastructure programs
in the US and elsewhere. These programs aim to enable “broad
and open access to leadership computing; data and information
resources; online instruments and observatories; and visualization
and collaboration services”—and to create broad-based
“distributed knowledge communities that collaborate and
communicate across disciplines, distances and cultures” [1].

After close to a decade of cyberinfrastructure programs, we can
point to many successes that have benefited thousands. Yet we
remain far from realizing what must surely be the ultimate
cyberinfrastructure goal: enabling the entire scientific community
to make effective use of new computational methods and tools.
Achieving this grand goal requires that we overcome challenges
of complexity and cost. Much scientific software is too complex
for general use, requiring specialized expertise and/or facilities to
install, use, and maintain. Furthermore, the scientific community
has not successfully assembled the resources needed to sustain
this often costly software, especially with the degree of support
needed for broad adoption. We must find new software
development, delivery, and funding methods that can
simultaneously achieve simplicity and sustainability. As we
explain in this brief paper, industry experience with SaaS and
PaaS suggest that scale can be the secret to bridging these goals.

2. The Emergence of SaaS and PaaS
Commercial information technology (IT) also used to suffer from
excessive complexity and cost, in much the same way as science
cyberinfrastructure. But over the past decade, commercial IT has
undergone the most consequential transformation since the

invention of the electronic computer: namely, the emergence of
cloud-hosted software as a service (SaaS) for large-scale
outsourcing, and platform as a service (PaaS) for large-scale
automation. The result has been a remarkable reduction in both
complexity and per-user costs.

A SaaS provider maintains and operates a single copy of their
software, configured so that many remote users can use it
concurrently. Users run the software over the Internet from their
Web browser. Intuitive Web interfaces and no local software to
install mean that the barriers to the use of software delivered by
SaaS can be far lower than for conventional software.

The impact of SaaS on society has been profound. Consumers and
companies alike increasingly hand off time-consuming and
tedious activities (e.g., organizing photos, booking travel, ordering
products, managing payroll) to SaaS providers, who perform them
reliably, efficiently, and cost effectively. Because the software is
easy to use and per-use costs are low, usage increases. Network
effects further encourage adoption.

The impact on the software industry is also significant. There is
no need to support multiple platforms or versions: instead, every
user runs up-to-date software. The software developer has full
visibility into how software is used, simplifying problem
determination and facilitating learning. On the other hand,
software developers must implement remote access interfaces that
scale to support many users, and SaaS providers must operate
services in a way that achieves high availability. Fortunately,
these latter tasks are simplified by PaaS systems from Amazon
Web Services (AWS), Google, Salesforce, and others, which
automate many aspects of SaaS operations: in effect, they provide
SaaS for SaaS. For example, AWS provides services for
deploying applications, replicating state, scaling capacity, queuing
requests, and content delivery, to mention just a few.
SaaS is more than just software accessed via a Web browser: SaaS
offerings typically also support programmatic access via REST
APIs. Thus, for example, Google Docs provides both a Web
interface for users who want to edit documents interactively and
also a REST API that applications can use to operate on those
same documents. Programmers can use such APIs to combine
functionality from multiple SaaS providers. For example, a
programmer at a manufacturing company might combine
customer data (from Salesforce, a SaaS customer relationship
provider), stock data (from Unleashed, a SaaS online inventory
management provider), and weather data, and generate a report (in
a Google spreadsheet) showing how sales and inventory vary with
weather. This example illustrates how a componentized view of

software allows SaaS to implement service-oriented architecture
(SOA) without the complexity that has bedeviled SOA in the past.

SaaS and PaaS have also driven major changes in the economics
of software distribution, based on the interplay between
simplicity, scale, and sustainability:

Simplicity: Intuitive Web 2.0 interfaces, designs that focus on
essentials, and outsourced operations make software delivered via
SaaS easier to use than conventional software, and thus reduce
barriers to entry for new users.

Scale: Low barriers to entry, when combined with attractive
features, spurs demand. Multi-tenant, cloud-based deployments
and self-help interfaces enable economies of scale in SaaS
providers, as the incremental cost per additional user is low.

Sustainability: Economies of scale allow providers of SaaS
software to achieve sustainable revenue with low per-use or
subscription charges, and/or freemium models in which basic
services are free and advanced features involve modest
subscriptions. Low charges in turn spur increased adoption,
leading to a virtuous cycle in which simplicity and low prices feed
large-scale use, which in turn permits lower prices.

Similar issues apply in the case of platforms, although here the
positive returns to scale are yet greater due to network effects.
(Indeed, platforms only succeed when broadly adopted.)

SaaS and PaaS have implications not only for software
development and business models, but also for policy. As Weyl
and White observe [2]: “The primary policy problem in platform
markets is usually considered to be excessive lock-in to a
potentially inefficient dominant platform. … Instead the greater
market failure is excessive fragmentation and insufficient
participation. These problems, in turn, call for a very different
policy response: aiding winners in taking all, ensuring they and
not their copycats profit from success, subsidizing adoption and
regulating the resulting ‘One’ dominant firm.”

3. Lessons for Scientific Cyberinfrastructure
I argue that the scientific community must apply SaaS/PaaS
methods to the delivery of science IT if it is to overcome
challenges of complexity and cost. Today, SaaS is rarely used in
science, and with few exceptions (e.g., Globus, iPlant, kBase),
simple, scalable, and sustainable science-focused platforms are
lacking. This situation leads to fragmentation due to replication of
function, which in turn hinders interoperability and prevents
network effects. To overcome these problems, the scientific
community and science funders must pursue substantial changes
to software delivery, architecture, funding, and related areas.

Delivery: Most scientific software today is downloaded, installed,
and run locally. This degree of complexity introduces a significant
barrier to entry: in many fields, installing, learning, and
maintaining state-of-the-art data analysis or simulation software
can be a full-time job. SaaS can overcome these barriers to entry
and thus enable much broader use. Scientific communities need to
determine which software can be delivered via SaaS and build
capacity in developing and operating SaaS.

Architecture: Much scientific software is organized as complex
vertically integrated packages. Where PaaS is appropriate (e.g., in
collaborative environments and data management), developers
can reduce costs and increase interoperability by outsourcing to
platform services. Investigators need to use existing platform
services and consider what new platform services could benefit
their community.

Sustainability: Much scientific software is sustained by dedicated
individuals or small teams, supported by a patchwork of grants.
This approach offers no positive returns to scale: if usage doubles,
support costs increase but resources do not. SaaS/PaaS
subscription models can overcome this problem, but need policies
that encourage SaaS and PaaS adoption at a sustainable scale.
Funders should consider policies that support the establishment
and sustenance of platforms. For example, awards could
encourage SaaS/PaaS, reward use of PaaS, and encourage
researchers to budget SaaS and PaaS usage charges in grants.

Norms: Research institutions are not typically accustomed to the
pay-per-use or consumption-based models that are typical of
SaaS/PaaS. Also, funders tend not to be cognizant of this
approach, which makes it difficult for investigators to incorporate
SaaS/PaaS into their grants. Funders and institutions should
promote new policies that overcome these challenges.

Open source: The community should also consider whether open
source requirements are appropriate in all settings. Initially
established with the laudable goal of spurring collaboration, open
source requirements can also facilitate copycatting, which can
prevent the large user bases that are essential to sustainability.

These and other changes to practice and policy need to be
discussed and debated broadly, to build consensus for action.

4. The Globus example
I present an example to demonstrate that unique features of
scientific software need not preclude the use of SaaS/PaaS.
Globus (globus.org) applies SaaS methods to deliver powerful
research data management services: transfer, sharing, publication,
discovery. Its Web 2.0 interfaces enable intuitive use by non-
experts without software installation; users proclaim that the
service is wonderful, that it “just works.” A cloud-hosted, multi-
tenant, and self-service implementation provides for scalability,
with more than 25,000 registered users and more than 90PB and
10B files transferred. As a step towards sustainability, Globus
implements a fremium subscription model: transfer services are
free but certain advanced features and management capabilities
are accessible only to subscribing institutions. This has attracted
more than 30 subscriptions as of May 2015.
Globus also functions as a platform. Its REST APIs allow other
applications and services to outsource research data management,
identity and group management, and other functions to Globus.
For example, the NCAR Research Data Archive outsources data
transfer and sharing functions to Globus.

5. Summary
With effort and vision, we can ensure that a broad spectrum of
software is accessible in this way, greatly simplified due to
outsourcing of functionality and sustained by a broad community
of subscribers. We will thus promote values we hold dear, such as
accessibility, reproducibility, and more money for research.

Acknowledgments
Supported in part by DOE DE-AC02-06CH11357, NSF OCI 10-
53575 and NIH 1U54EB020406-01. I thank Dan Katz, Brigitte
Raumann, Steve Tuecke, and Vas Vasiliadis for their comments.

References
1. NSF Cyberinfrastructure Vision for 21st Century Discovery,

http://www.nsf.gov/pubs/2007/nsf0728/, 2007.
2. Weyl, E.G. and White, A. Let the Right "One" Win: Policy Lessons

from the New Economics of Platforms. Competition Policy
International, 10(2):29-51, 2014.

