

How to make a Storage Service Definition

Nicholas Car*

Data Storage Service Definitions WG, RDA Plenary 11

Modern data model types 1/2

• UML

- Standardised, platform-independent models
- Need to be interpreted into another form for direct use (e.g. XML)

Database schema

- Entity-relationship diagrams etc.
- Good for relational models only, not good for exchange

Data exchange schema

- XML, JSON etc
- Good for exchange, not good for storage (but getting better: JSON DBs)

Modern data model types 2/2

- Semantic Web
 - Can be used for system-independent modelling & system-specific models
 - Due to exact implementations of RDF & SPARQL standards
 - Use sophisticated, standardized, RDF or OWL modelling
 - Better than UML class/object models!
 - Should inherit from/extend existing models
 - Part of the "Semantic Web"

Semantic Web model types 1/2

- Vocabularies v. Ontologies
 - Technically all instances of ontologies are vocabularies and all vocabularies are instances of an ontology
- Ontologies
 - A set of classes and relationships about an area of interest
 - Can use any one of a number of Semantic Web languages
 - All are based on RDF
 - In this list, each extends on the last
 - RDFS basic claases & subclasses (hierarchies)

 - OWL set theory-based modeling: unions, intersects etc.
 - OWL2 improved OWL

Semantic Web model types 2/2

- Vocabularies
 - Usually, not always, purely hierarchical
 - Tend to use SKOS
 - SKOS itself uses OWL
 - A fairly simple ontology focused on term hierarchies
 - Contains only a few semantic relations for Concepts: closeMatch, exactMatch, xxx
 - Easy to cater for in tooling due to limited options

Voc or Ont for SSDefn?

- Can't use just a vocab if we want to relate a series of very different concepts in incommensurate ways or in non-hierarchical ways
 - e.g. system geographic placement, latency, cost, policy features
- Could use SKOS vocabs for collections of commensurate terms
 - e.g. a hierarchy of different types of policy

Suggestion: use an OWL2 ontology for a main Storage System model, vocabularies for terms as needed

Catering for non-Sem Web systems

Like TOSCA templates, iRODS definitions, onedata system defns, vendor descriptions

- Implement an OWL model and provide mappings to others
- Publish the mappings as parts of the data model
- Implement converters, based on the mappings

I have done this many times before as all domains I've worked in have important non-Sem Web models that need supporting!

Straw man model: http://purl.org/storagesys

Storage Systems ontology

IRI:

http://purl.org/storagesys

Version IRI:

http://purl.org/storagesys/0.1

Authors:

Nicholas Car

http://orcid.org/0000-0002-8742-7730

Contributors:

Mikael Borg

Paul Millar

Research Data Alliance Working Group on Storage Service Definitions

Ontology source:

in turtle in RDF/XML

Further documentation & examples:

This ontology's full documentation on GitHub

Abstract

This ontology is designed to describe digital artefact storage systems in a vendor-neutral way so that gauged. This ontology fits within the broader context of other ontologies designed to describe records ma

Table of Content

- 1. Classes
- 2. Object Properties
- 3. Data Properties
- 4. Namespace Declarations

Classes

<u>certification</u> <u>Digital Artefact</u> <u>feature</u> <u>geographic placement</u> <u>Information System</u> <u>ir performance</u> <u>placement</u> <u>power network placement</u> <u>Redundancy</u> <u>retention</u> <u>Storage Region</u>

Straw man model: http://purl.org/storagesys

AGRIF: Artefacts & Records

AGRIF
Imported
Class

DCAT: Datasets & Distributions

sub class of

AGRIF Imported Class

DCAT Imported Class

Storage System Attributes: Redundancy

We can indicate that a system does, or that a system to be chose should, have Local, Zonal or Regional redundancy.

This may be purely numerical ("a Zonal redundancy of 2") but may be Feature-specific ("...one copy in Rome, one in Paris")

We can select/search for systems from a set of them, based on redundancy.

We can define what redundancy means elsewhere.

A particularly important system attribute

Should it be its own thing? Or just another Attribute?

Storage System Attributes: Placement

If Redundancy is numerical, we could use placement for specific Regions, Zones or other features like Power Grids etc.

Requiring systems with specific characteristics

- If we have modelled in OWL, we can query for instances of a system with certain characteristics using SPARQL:
 - A system with a zonal redundancy of 2 within the European East region and a write latency of less than 300 ms:

Mapping to TOSCA templates