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Al in medicine
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data sources for Al development

M Diagnostic Imaging
M Electrodiagnosis

M Genetic diagnosis

Clinical Laboratory

M Mass Screening

® Others
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The healthcare data landscape

‘/ Vast amounts of typically low-quality clinical and
wellbeing data

Much fewer, good quality and increasingly expensive
research data

® Both are locked in siloes by (much needed) privacy Iawé



Still short on data

Up to 70% of records can lack
a meaningful diagnostic code

Quality
of Data
A
$7.01t0 $52.9 million | COST OF ACCESS  yipan, GoPR
(up to S350 million) (penalties of up to 4%
for Phase 2-3 trials Data to Data in yearly revenue)
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Emerging solutions

Secure multi-party computation

Synthetic data
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SMPC

Computational costs are high, or hard to
predict

Needs strict, shared governance among data
providers

Data access is hard to quantify/monetize



What is synthetic data?

Data generated to recreate pre-defined
characteristics of a target population for one or

more clinical modalities.
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Invented outside of medicine
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Understanding synthetic data
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Generative Adversarial Network framework.
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Understanding Synthetic.Data

 Generative methods
* GAN, InfoGAN, Monte Carlo simulations

« Coupled with quality control systems
« Discriminators, including human experts
* Risks: mode collapse, leakage

« And INTERPRETABILITY!
e Ex. Mutual information algorithm
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Practical uses \

Images, free text, EMR or genetic data

* Multi-modal generation

From MRI to Angiography

From 3D to multiple 2Ds views
From structured data to free text

(ex. for NLP applications or
patient communications)
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Synthesis of images of the spine

Prrontiers . oL rese
in Bioengineering and Biotechnology doi: 10.3389/fbioe.2018.00053
=

Exploring the Potential of Generative
Adversarial Networks for
Synthesizing Radiological Images of
the Spine to be Used in In Silico Trials

Fabio Galbusera ™, Frank Niemeyer?, Maike Seyfried?, Tito Bassani', Gloria Casaroli’,
Annette Kienle® and Hans-Joachim Wilke?

"IRCCS Istituto Ortopedico Galeazzi, Milan, Italy, > Center for Trauma Research Ulm, Institute of Orthopedic Research and
Bjomechanics, Ulm University, Ulm, Germany, ° SpineServ GmbH & Co. KG, Ulm, Germany
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Value and Limitations .
* If you didn’t build it in, it isn’t there
* Information replication, not information generation
- But if it was not there, you may be able to build it
» Correcting data gaps and biases
« Skewed distributions, underrepresented populations
 Errors (ex. Blood pressure measurements of “0” instead of “missing”)
« GDPR compliant
» “Reasonable efforts to protect data”
 Risk vs. cost can be assessed
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Value and Limitations 2.

 Low cost
* Infinitely scalable once the generative pipeline is set
* Images can be pre-annotated
» Modifying parameters allows a range of generations

* Require substantial statistical and data management skills
« But it's getting better

* For some biomedical products they are becoming main-stream
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Phase Goal Population Success rate

. 20-100 healthy approximately
Phase | Testing for safety volunteers 20%
Phase I Testing for efficacy and side 100-300 patients approximately
effects with diseases 33%
Testing for efficacy, 300-3,000 patients o
Phase Ill effectiveness and safety with ] diseases 25-30%

The problem with clinical trials
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- ‘Dynamic’ synthetic data:
Models of anatomy, physiology
and pathology to perform
el simulations

Reduction of the duration of clinical
development by up to 30%
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Adaptive, in-silico
trials

Using good prior
information in a
Bayesian approach
for the statistical
analysis of a trial

Good simulations
produce good
priors




The way forward

* SD can
— Effectively protect patient privacy
— Reduce costs of biomedical data access, at scale

— Support real-world applications in research and Al
development

What is missing?
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Data marketplaces




Thank-you

24



