Metadata Models for Experimental Science Data Management

Brian Matthews

Facilities Programme Manager Scientific Computing Department, STFC

Co-Chair RDA Photon and Neutron Science Interest Group

Task lead, NA on metadata standardisation,

NFFA-Europe

Science & Technology

Large-Scale Analytic Facilities

Key challenges of the 21st century

- energy, global climate, health and security
- study matter at the scales
 - from single atoms (10^{-10} m) to living cells (10^{-6} m) to whole systems (10^{-3} 1 m)

High resolution "microscopes" \rightarrow intense beams of particles \rightarrow Specialist sources

Requires large scale research infrastructures that are beyond the capability of any single university or research group

Diamond

Photons (X-Rays) "see" electric charge – high atomic number nuclei

Neutrons "see" nucleons – including hydrogen atoms

Experimental Method

- Fundamental in science
 - The defining feature
- Experimental methodology
 - A Subject of study
 - Controlled environmental conditions
 - Vary chosen parameters
 - Measure and take data
 - Analysis to interpret data
 - Compare with hypothesis (model)
- Data alone is useless
 - With some simple descriptive metadata
- Need full-context of the experiment
 - Restartability
 - Validation
 - Reproducability

The science we do - Structure of materials

- A particular view on what an "experiment" is
 - Structural determination of materials
 - Possibly multiple runs, multiple techniques
 - Compared and contrast with computational models
 - Increasingly dynamics
 - May be used in a wider context
 - E.g. Drug candidates
- May differ from other views of experiments
 - Observations and measurements
 - Longitudinal studies
 - Etc
- But a "useful" subclass
 - And may be generalisable (?)

Data Management Systems

ICAT Data Management Suite

Integrated data management pipelines

From data acquisition to storage to publication

Metadata as Middleware

- A Catalogue of Experimental Data
- Automated metadata capture
- Integrated with the User Office and data acquisition system

Providing access to the user

- TopCat web front end
- Integrated into Analysis frameworks
 - Mantid for Neutrons, DAWN for X-Rays

15 years effort to build data management systems

DLS Archive of

- 4.7PB, 1100 million files (Aoril 2016)

ISIS Data Archive

- Full experimental Metadata

ICAT Open Source Collaboration: www.icatproject.org

Facility Data Lifecycle

ICAT http://www.icatproject.org

Core Scientific Metadata Model (CSMD)

For use within the repository for organising data

http://purl.org/net/CSMD
http://icatproject.org/CSMD/

An open access resource for experimental & theoretical nanoscience

Information and Data Management Repository Platform for nanoscience

- An integrated platform
 - > covering the full research cycle by the users.
 - > automatic acquisition of key metadata
 - > a data repository for future data access

Defining metadata standards for data sharing in nanoscience

- ➤ To represent data from nanoscience experiment and theoretical analysis.
- ➤ Use currently available standards e.g. from PaNData project.
- >STFC, CNR-IOM, ESRF, KIT, FORTH

➤ Materials IG - and International Materials Resource Registries WG

Metadata for Nanomaterials Data

- Workflow for Nano-structured Science
- Metadata focussed around the Project
 - A user centred view
- NFFA Deliverable 11.2: Draft Metadata Standard
 - 29th February 2016

Core vocabulary for Entities

Experiment Concepts

- Research User
- Instrument Scientist.
- Project
- Proposal
- Facility
- Instrument
- Experiment
- Measurement
- Sample

Data Concepts

- Raw Data
- Analyzed Data
- Data Asset
- Data Analysis
- Data Analysis
 Software
- Data Archive
- Data Policy
- Data Manager
- Data Curation Activity

Relations between Entities

Not just us of course: Chemical Process Description

- Experimental process
- Measurement parameters
- Sample description/ preparation
- Observation/outcome description
- Data analysis
- Reaction transformation
- Equipment/apparatus
- Laboratory/environmental parameters

- Metadata used in data models (e.g.,oreChem)
- XML standards (e.g., AnIML, S88)
- Methods ontologies (e.g., ChMO)
- Analytical terminology (e.g,IUPAC Orange Book)
- Incident analysis (e.g., BowTie)

RDA Metadata IG Common Concepts

For RDA

- FAIR: Interoperability, Reusability
 - Entities in a Core Metadata Vocabulary
 - Agreed definitions
 - Nature of Relationship between entities
 - Base Attributes for all Entities
- Based on models for research processes
 - General enough to be in common
 - Specific enough to be useful
- Role of Pids
 - Pids for everything!
- Relationships to other metadata
 - Provenance, Preservation ...

