
Introducing Maneage:
Customizable framework for managing data lineage

[RDA Europe Adoption grant recipient. Submitted to IEEE CiSE (arXiv:2006.03018), Comments welcome]

Mohammad Akhlaghi
Instituto de Astrof́ısica de Canarias (IAC), Tenerife, Spain

RDA Spain webinar
July 9th, 2020

Most recent slides available in link below (this PDF is built from Git commit a678365):

https://maneage.org/pdf/slides-intro-short.pdf

https://www.computer.org/csdl/magazine/cs
https://arxiv.org/abs/2006.03018
https://akhlaghi.org
https://www.bsc.es/news/events/rda-spain-webinar
http://git.maneage.org/slides-intro.git
https://maneage.org/pdf/slides-intro-short.pdf

Challenges of the RDA-WDS Publishing Data Workflows WG (DOI:10.1007/s00799-016-0178-2)

Challenges (also relevant to researchers, not just repositories)

I Bi-directional linking: how to link data and publications.

I Software management: how to manage, preserve, publish and cite software?

I Metrics: how often are data used.

I Incentives to researchers: how to communicate benefits of following good practices to researchers.

“We would like to see a workflow that results in all scholarly objects being connected, linked, citable,
and persistent to allow researchers to navigate smoothly and to enable reproducible research. This
includes linkages between documentation, code, data, and journal articles in an integrated
environment. Furthermore, in the ideal workflow, all of these objects need to be well documented to
enable other researchers (or citizen scientists etc) to reuse the data for new discoveries.”

https://doi.org/10.1007/s00799-016-0178-2

General outline of a project (after data collection)

Existing solutions:

Virtual machines

Containers (e.g., Docker)

OSs (e.g., Nix, GNU Guix)

Software Build

Hardware/data

Run software on data Paper

https://heywhatwhatdidyousay.wordpress.com
http://pngimages.net

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Environment update?

In sync with coauthors?

Sync with analysis?

Report this info?

Cited software?

History recorded?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

https://heywhatwhatdidyousay.wordpress.com
http://pngimages.net

Science is a tricky business

Image from nature.com (“Five ways to fix statistics”, Nov 2017)

Data analysis [...] is a human behavior. Researchers who hunt hard enough will turn up a result that fits
statistical criteria, but their discovery will probably be a false positive.

Five ways to fix statistics, Nature, 551, Nov 2017.

https://www.nature.com/articles/d41586-017-07522-z

Founding criteria

Basic/simple principle:

Science is defined by its METHOD, not its result.

I Complete/self-contained:
I Only dependency should be POSIX tools (discards Conda or Jupyter which need Python).
I Must not require root permissions (discards tools like Docker or Nix/Guix).
I Should be non-interactive or runnable in batch (user interaction is an incompleteness).
I Should be usable without internet connection.

I Modularity: Parts of the project should be re-usable in other projects.
I Plain text: Project’s source should be in plain-text (binary formats need special software)

I This includes high-level analysis.
I It is easily publishable (very low volume of ×100KB), archivable, and parse-able.
I Version control (e.g., with Git) can track project’s history.

I Minimal complexity: Occum’s rasor: “Never posit pluralities without necessity”.
I Avoiding the fashionable tool of the day: tomorrow another tool will take its place!
I Easier learning curve, also doesn’t create a generational gap.
I Is compatible and extensible.

I Verifable inputs and outputs: Inputs and Outputs must be automatically verified.

I Free and open source software: Free software is essential: non-free software is not configurable,
not distributable, and dependent on non-free provider (which may discontinue it in N years).

General outline of a project (after data collection)

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Environment update?

In sync with coauthors?

Sync with analysis?

Report this info?

Cited software?

History recorded?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

Example: Matplotlib (a Python visualization library) build dependencies

From “Attributing and Referencing (Research) Software: Best Practices and Outlook from Inria” (Alliez et al. 2020, CiSE, DOI:10.1109/MCSE.2019.2949413).

https://doi.org/10.1109/MCSE.2019.2949413

Advantages of this build system

I Project runs in fixed/controlled environment: custom build of Bash, Make,
GNU Coreutils (ls, cp, mkdir and etc), AWK, or SED, LATEX, etc.

I No need for root/administrator permissions (on servers or super computers).

I Whole system is built automatically on any Unix-like operating system
(less 2 hours).

I Dependencies of different projects will not conflict.

I Everything in plain text (human & computer readable/archivable).

https://natemowry2.wordpress.com

https://natemowry2.wordpress.com

Software citation automatically generated in paper (including Astropy)

General outline of a project (after data collection)

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Environment update?

In sync with coauthors?

Sync with analysis?

Report this info?

Cited software?

History recorded?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

Input data source and integrity is documented and checked

Stored information about each input file:

I PID (where available).

I Download URL.

I MD5-sum to check integrity.

All inputs are downloaded from the given PID/URL when necessary
(during the analysis).

MD5-sums are checked to make sure the download was done properly or the file
is the same (hasn’t changed on the server/source).

Example from the reproducible paper arXiv:1909.11230.
This paper needs three input files (two images, one catalog).

https://arxiv.org/abs/1909.11230

General outline of a project (after data collection)

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Environment update?

In sync with coauthors?

Sync with analysis?

Report this info?

Cited software?

History recorded?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

Reproducible science: Maneage is managed through a Makefile

All steps (downloading and analysis) are managed by Makefiles
(example from zenodo.1164774):

I Unlike a script which always starts from the top, a Makefile starts from the
end and steps that don’t change will be left untouched (not remade).

I A single rule can manage any number of files.

I Make can identify independent steps internally and do them in parallel.

I Make was designed for complex projects with thousands of files (all major
Unix-like components), so it is highly evolved and efficient.

I Make is a very simple and small language, thus easy to learn with great
and free documentation (for example GNU Make’s manual).

https://doi.org/10.5281/zenodo.1164774
https://www.gnu.org/software/make/manual/

General outline of a project (after data collection)

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Environment update?

In sync with coauthors?

Sync with analysis?

Report this info?

Cited software?

History recorded?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

Values in final report/paper

All analysis results (numbers, plots, tables) written in paper’s PDF as LATEX macros. They are thus
updated automatically on any change.
Shown here is a portion of the NoiseChisel paper and its LATEX source (arXiv:1505.01664).

https://arxiv.org/abs/1505.01664

Analysis step results/values concatenated into a single file.

All LATEX macros come from a single file.

Analysis results stored as LATEX macros

The analysis scripts write/update the LATEX macro values automatically.

Let’s look at the data lineage to replicate Figure 1C (green/tool) of Menke+2020
(DOI:10.1101/2020.01.15.908111), as done in arXiv:2006.03018 for a demo.

ORIGINAL PLOT
The Green plot shows the fraction of papers mentioning
software tools from 1997 to 2019.

OUR enhanced REPLICATION
The green line is same as above but over
their full historical range.
Red histogram is the number of papers
studied in each year

101

102

103

104

105

N
um

.p
ap

er
s

(lo
g-

sc
al

e)

1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
0%

20%

40%

60%

80%

100%

Year

Fr
ac

.
pa

pe
rs

w
ith

to
ol

s

https://doi.org/10.1101/2020.01.15.908111
https://arxiv.org/abs/2006.03018

All analysis steps cascade down to paper.pdf (URL and checksum of input in INPUTS.conf).

top-make.mk

initialize.mk download.mk format.mk demo-plot.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.texverify.tex

initialize.tex

Basic project info
(e.g., Git commit).

Also defines
project structure
(for *.mk files).

demo-plot.tex

tools-per-
year.txt

table-3.txt

menke20.xlsx

INPUTS.conf

download.tex format.tex

demo-year.conf

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

It is very easy to expand the project and add new analysis steps (this solution is scalable)

top-make.mk

initialize.mk download.mk format.mk demo-plot.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.texverify.tex

initialize.tex

Basic project info
(e.g., Git commit).

Also defines
project structure
(for *.mk files).

demo-plot.tex

tools-per-
year.txt

table-3.txt

menke20.xlsx

INPUTS.conf

download.tex format.tex

demo-year.conf

next-step.mk

next-step.tex

out-a.dat

out-b.dat

demo-out.dat

param.conf

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

All questions have an answer now (in plain text: human & computer readable/archivable).

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Environment update?

In sync with coauthors?

Sync with analysis?

Report this info?

Cited software?

History recorded?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

All questions have an answer now (in plain text: so we can use Git to keep its history).

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Environment update?

In sync with coauthors?

Sync with analysis?

Report this info?

Cited software?

History recorded?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

New projects branch from Maneage

Maneage

ad2c476

706c644

fa2ac10

1e06fe2

32043ee

2d808f2

a4d96c0

Project

53b53d6

9f8cc74

8ebb784

01ce2cc

b52cc6f

b52
cc6

f

I Each point of project’s history is recorded with Git.

I New project: a branch from the template.
Recall that every commit contains the following:
I Instructions to download, verify and build software.
I Instructions to download and verify input data.
I Instructions to run software on data (do the analysis).
I Narrative description of project’s purpose/context.

I Research progresses in the project branch.

I Template will evolve (improved infrastructure).

I Template can be imported/merged back into project.

I The template and project will evolve.

I During research this encourages creative tests
(previous research states can easily be retrieved).

I Coauthors can work on same project in parallel
(separate project branches).

I Upon publication, the Git checksum is enough to
verify the integrity of the result.

“Verified” image from vectorstock.com

https://www.vectorstock.com/royalty-free-vector/red-vintage-verified-stamp-retro-style-on-white-vector-22770076

Two recent examples (publishing Git checksum in abstract)

Publication of the project

A reproducible project using Maneage will have the following (plain text) components:

I Makefiles.

I LATEX source files.

I Configuration files for software used in analysis.

I Scripts/programming files (e.g., Python, Shell, AWK, C).

The volume of the project’s source will thus be negligible compared to a single figure in a paper
(usually ∼ 100 kilo-bytes).

The project’s pipeline (customized Maneage) can be published in

I arXiv: uploaded with the LATEX source to always stay with the paper
(for example arXiv:1505.01664 or arXiv:2006.03018).

I Zenodo: Along with all the input datasets (many Gigabytes) and software
(for example zenodo.3872248) and given a unique DOI.

https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/2006.03018
https://doi.org/10.5281/zenodo.3872248

Executing a Maneaged project (for example arXiv:2006.03018)

$ git clone https://gitlab.com/makhlaghi/maneage-paper # Import the project.

$./project configure # You will specify the build directory on your system,

and it will build all software (about 1.5 hours).

$./project make # Does all the analysis and makes final PDF.

https://arxiv.org/abs/2006.03018

Future prospects...

Adoption of reproducibility by many researchers will enable the following:

I A repository for education/training (PhD students, or researchers in other fields).

I Easy verification/understanding of other research projects (when necessary).

I Trivially test different steps of others’ work (different configurations, software and etc).

I Science can progress incrementally (shorter papers actually building on each other!).

I Extract meta-data after the publication of a dataset (for future ontologies or vocabularies).

I Applying machine learning on reproducible research projects will allow us to solve some Big
Data Challenges:

I Extract the relevant parameters automatically.

I Translate the science to enormous samples.

I Believe the results when no one will have time to reproduce.

I Have confidence in results derived using machine learning or AI.

Summary:
Maneage and its principles are described in arXiv:2006.03018. It is a customizable template that will
do the following steps/instructions (all in simple plain text files).

I Automatically downloads the necessary software and data.

I Builds the software in a closed environment.

I Runs the software on data to generate the final research results.

I Modification of part of the analysis will only result in re-doing that part, not the whole project.

I Using LaTeX macros, paper’s figures, tables and numbers will be Automatically updated after a
change in analysis. Allowing the scientist to focus on the scientific interpretation.

I The whole project is under version control (Git) to allow easy reversion to a previous state. This
encourages tests/experimentation in the analysis.

I The Git commit hash of the project source, is printed in the published paper and saved on output
data products. Ensuring the integrity/reproducibility of the result.

I These slides are available at https://maneage.org/pdf/slides-intro-short.pdf.

I Longer slides are available at https://maneage.org/pdf/slides-intro.pdf.

For a technical description of Maneage’s implementation, as well as a checklist to customize it, and
tips on good practices, please see this page:
https://gitlab.com/maneage/project/-/blob/maneage/README-hacking.md

https://arxiv.org/abs/2006.03018
https://maneage.org/pdf/slides-intro-short.pdf
https://maneage.org/pdf/slides-intro.pdf
https://gitlab.com/maneage/project/-/blob/maneage/README-hacking.md

