
Data Versioning Use Cases

Web Sources
W3C Data on the Web Best Practices
https://www.w3.org/TR/dwbp/#dataVersioning

Datasets published on the Web may change over time. Some datasets are updated
on a scheduled basis, and other datasets are changed as improvements in collecting
the data make updates worthwhile. In order to deal with these changes, new
versions of a dataset may be created. Unfortunately, there is no consensus about
when changes to a dataset should cause it to be considered a different dataset
altogether rather than a new version. In the following, we present some scenarios
where most publishers would agree that the revision should be considered a new
version of the existing dataset.

W3C Dataset Exchange Use Cases and
Requirements
https://w3c.github.io/dxwg/ucr/#ID4

Most datasets that are maintained long-term and evolve over time have distributions
of multiple versions. However, the current DCAT model does not cover versioning
with sufficient details. Being able to publish dataset version information in a standard
way will help both producers publishing their data on data catalogues or archiving
data and dataset consumers who want discover new versions of a given dataset, etc.
We can also see some similarities with software versioning and dataset versioning,
for instance, some data projects release daily dataset distributions, major/minor
releases etc. Probably, we can use some of the lessons learned from software
versioning. There are several existing dataset description models that extend DCAT
to provide versioning information, for example, HCLS Community Profile.

Links:
● https://www.w3.org/TR/hcls-dataset/#datasetdescriptionlevels
● https://www.w3.org/TR/dwbp/#dataVersioning
● https://www.w3.org/TR/dwbp-ucr/#R-DataVersion
● http://db.csail.mit.edu/pubs/datahubcidr.pdf
● https://lists.w3.org/Archives/Public/public-dxwg-wg/2017Jun/thread.html#msg

6

https://www.w3.org/TR/dwbp/#dataVersioning
https://w3c.github.io/dxwg/ucr/#ID4
https://www.w3.org/TR/hcls-dataset/#datasetdescriptionlevels
https://www.w3.org/TR/dwbp/#dataVersioning
https://www.w3.org/TR/dwbp-ucr/#R-DataVersion
http://db.csail.mit.edu/pubs/datahubcidr.pdf
https://lists.w3.org/Archives/Public/public-dxwg-wg/2017Jun/thread.html#msg6
https://lists.w3.org/Archives/Public/public-dxwg-wg/2017Jun/thread.html#msg6

Related use cases:
● 5.32 Relationships between Datasets [ID32]

Related requirements:
● 6.5 Define version
● 6.6 Version identifiers
● 6.7 Version release dates
● 6.8 Version changes
● 6.9 Version discovery

Wikipedia Page on Software Versioning
https://en.wikipedia.org/wiki/Software_versioning

Software versioning is the process of assigning either unique version names or
unique version numbers to unique states of computer software. Within a given
version number category (major, minor), these numbers are generally assigned in
increasing order and correspond to new developments in the software. At a
fine-grained level, revision control is often used for keeping track of incrementally
different versions of electronic information, whether or not this information is
computer software.

Modern computer software is often tracked using two different software versioning
schemes—an internal version number that may be incremented many times in a
single day, such as a revision control number, and a released version that typically
changes far less often, such as semantic versioning[1] or a project code name.

Semantic Versioning
http://semver.org/

In the world of software management there exists a dread place called “dependency
hell.” The bigger your system grows and the more packages you integrate into your
software, the more likely you are to find yourself, one day, in this pit of despair.

In systems with many dependencies, releasing new package versions can quickly
become a nightmare. If the dependency specifications are too tight, you are in
danger of version lock (the inability to upgrade a package without having to release
new versions of every dependent package). If dependencies are specified too
loosely, you will inevitably be bitten by version promiscuity (assuming compatibility
with more future versions than is reasonable). Dependency hell is where you are
when version lock and/or version promiscuity prevent you from easily and safely
moving your project forward.

https://lists.w3.org/Archives/Public/public-dxwg-wg/2017Jun/thread.html#msg6
https://w3c.github.io/dxwg/ucr/#ID32
https://w3c.github.io/dxwg/ucr/#RID5
https://w3c.github.io/dxwg/ucr/#RID6
https://w3c.github.io/dxwg/ucr/#RID7
https://w3c.github.io/dxwg/ucr/#RID8
https://w3c.github.io/dxwg/ucr/#RID9
https://en.wikipedia.org/wiki/Software_versioning
https://en.wikipedia.org/wiki/Computer_software
https://en.wikipedia.org/wiki/Computer_software
https://en.wikipedia.org/wiki/Revision_control
https://en.wikipedia.org/wiki/Revision_control
https://en.wikipedia.org/wiki/Software_versioning#Internal_version_numbers
https://en.wikipedia.org/wiki/Software_versioning#Internal_version_numbers
https://en.wikipedia.org/wiki/Revision_control
https://en.wikipedia.org/wiki/Revision_control
https://en.wikipedia.org/wiki/Software_versioning#cite_note-semver-1
https://en.wikipedia.org/wiki/Code_name#Project_code_name
https://en.wikipedia.org/wiki/Code_name#Project_code_name
http://semver.org/

As a solution to this problem, I propose a simple set of rules and requirements that
dictate how version numbers are assigned and incremented. These rules are based
on but not necessarily limited to pre-existing widespread common practices in use in
both closed and open-source software. For this system to work, you first need to
declare a public API. This may consist of documentation or be enforced by the code
itself. Regardless, it is important that this API be clear and precise. Once you identify
your public API, you communicate changes to it with specific increments to your
version number. Consider a version format of X.Y.Z (Major.Minor.Patch). Bug fixes
not affecting the API increment the patch version, backwards compatible API
additions/changes increment the minor version, and backwards incompatible API
changes increment the major version.

I call this system “Semantic Versioning.” Under this scheme, version numbers and
the way they change convey meaning about the underlying code and what has been
modified from one version to the next.

RDA Sources
RDA Data Citation Recommendation
https://www.rd-alliance.org/group/data-citation-wg/outcomes/data-citation-recommen
dation.html

Digitally driven research is dependent on quickly evolving technology. As a result,
many existing tools and collections of data were not developed with a focus on long
term sustainability. Researchers strive for fast results and promotion of those results,
but without a consistent and long term record of the validation of their data,
evaluation and verification of research experiments and business processes is not
possible.

There is a strong need for data identification and citation mechanisms that identify
arbitrary subsets of large data sets with precision in a machine-actionable way.
These mechanisms need to be user-friendly, transparent, machine-actionable,
scalable and applicable to various static and dynamic data types.

Data Versioning: For retrieving earlier states of datasets the data needs to be
versioned. Markers shall indicate inserts, updates and deletes of data in the
database.

RDA Data Foundations and Terminology IG
https://smw-rda.esc.rzg.mpg.de/index.php?title=Versioning

https://www.rd-alliance.org/group/data-citation-wg/outcomes/data-citation-recommendation.html
https://www.rd-alliance.org/group/data-citation-wg/outcomes/data-citation-recommendation.html
https://smw-rda.esc.rzg.mpg.de/index.php?title=Versioning

Definition: Generate a (changed) copy of a data object that is uniquely labeled with a
version number. The intent is to enable access to prior versions.

Explanation: Note that a version is different from a backup copy, which is typically a
copy made at a specific point in time, or a replica, which is a copy of a data object
that can be periodically updated.

Related term – version, replication

Example:

Scope: RDA Term Collection Core

Use cases
da|ra Registration agency for social and economic
data
da|ra (Registration agency for social and economic data) provides recommendations
on versioning:

https://www.da-ra.de/fileadmin/media/da-ra.de/PDFs/TechnicalReport_2014-18.pdf

p. 14/15

The GESIS Leibniz Institute for the Social Sciences (www.gesis.org) is compliant
with this recommendation and is operating a dree-digit-versioning.

Major.Minor.Revision

Major number starts with „1“, Minor and Revision number start with „0“ separate with
„.“

First version of a data file is „1.0.0“.

1. Increase of the first digit if new data is added (e. g. waves, samples etc.)
2. Change of the second digit if corrections are made, which influence the

analysis (e. g. change of values of respondents)
3. If the documentation is changed or emended (typing error or more detailed

text added etc.) only the third digit will be increased

This versioning is based on the recommendations of the Data Documentation
Initiative (DDI). DDI-Lifecycle 3.2

http://www.ddialliance.org/Specification/DDI-Lifecycle/3.2/drafts/IVMR_DRAFT.pdf ;
page 2/3 “Versioning”

In the GESIS Data catalogue (DBK) the versioning and corresponding errata are
documented. Description (in German only) please see here:

https://www.da-ra.de/fileadmin/media/da-ra.de/PDFs/TechnicalReport_2014-18.pdf
http://www.gesis.org/
http://www.ddialliance.org/Specification/DDI-Lifecycle/3.2/drafts/IVMR_DRAFT.pdf

http://www.gesis.org/fileadmin/upload/forschung/publikationen/gesis_reihen/gesis_m
ethodenberichte/2012/TechnicalReport_2012-01.pdf

page 13/14

DIACHRON project
http://www.diachron-fp7.eu/

DIACHRON is an integration project that addresses certain issues arising from the
evolution of the data such as:

● Detect the changes of that happen to datasets (tracking the evolution)

● Archive multiple versions of data and cite them accordingly to make the
reference of previous data feasible (archiving and citation)

● Retrieve and query previous versions (time traveling queries)

● Validate and repair various data deficiencies (curation problem)

● Identify the cause of the evolution of the datasets in respect with the real
world evolution of the entities the datasets describe (provenance problem)

● Provide various quality metrics so as to enable quality assessment of the
harvested datasets and determination of the datasets versions that need to be
preserved (appraisal)

The DIACHRON solution aims not only to store previous versions for preservation in
case of future need of them, but to create a live repository of the data that captures
and highlights data evolution by keeping all data (current and previous) accessible,
combined with a toolset that handles the full life cycle of the Data Web.

United States Geological Survey (USGS, Draft
Policy)
https://www2.usgs.gov/datamanagement/share/dataversioning.php

Guidance on Documenting Revisions to Data Releases:
This guidance describes a formal revision process for datasets and associated
metadata that have been released as an information product and require change.

Not covered in this guidance are USGS approved databases or Web data services
for data that are expected to change continuously or on a schedule, with additions
and updates made over time. Examples of these systems or services include NWIS,
USA-NPN, and BISON. These data products have processes in place for data
quality evaluation prior to data being loaded.

http://www.gesis.org/fileadmin/upload/forschung/publikationen/gesis_reihen/gesis_methodenberichte/2012/TechnicalReport_2012-01.pdf
http://www.gesis.org/fileadmin/upload/forschung/publikationen/gesis_reihen/gesis_methodenberichte/2012/TechnicalReport_2012-01.pdf
http://www.diachron-fp7.eu/
https://www2.usgs.gov/datamanagement/share/dataversioning.php

Revision of a data release is warranted, for example, when an error is detected and
needs to be corrected (deleted, changed) for future use of the data. When correcting
data errors, changes are made to the data only where needed, but no other
alterations are made to either the structure or content. Another example case for
revision is the release of data in stages in order to meet project timelines, so that the
amount of data provided in an information product increases through subsequent
versions.

If, in the revision, data are corrected or added, the data release must again be
reviewed for quality and accuracy, and the modifications must be documented as
described below. For substantial or major revisions (defined below, in the Version
Numbering section), the review process should be documented in the Information
Product Data System (IPDS).

The revision process is described below for the following four cases:

1. Correcting an error

2. Appending new data

3. Extending the data structure

4. Archiving deprecated data

Following these cases, guidance is provided for assigning revision numbers.

Correcting an Error:
If an error is found that is not in the data itself, such as a misspelling in a data header
or a site location name, replace or update the erroneous file and update the
metadata record and any additional documentation to reflect the update.

If an error is found in the data, the author should correct the data release. If the error
is large enough to affect outcomes of future data use, create a new data release
record in the IPDS. A new version of the corrected data should note that the revised
version (as opposed to previous versions) is current. The landing page should
describe the error and point users to the new version of the data. The original or
previous version of the data should also be preserved in case it is needed to
understand previous uses, and in accordance with records management disposition
schedules and litigation holds requirements. The revision process will result in a new
IPDS record, an updated metadata record, updates to the online documentation
including a revision history, and a new incremental version number (e.g., version 1.1,
refer to “Version numbering” below.). All review requirements apply to the new
version. Once revised data are released, the citation should reflect the new
incremental version of the data as shown in the example citations below.

If the error could affect existing USGS scientific conclusions, consult your local
Bureau Approving Official in the Office of Science Quality and Integrity
(https://internal.usgs.gov/fsp/toolbox/approvingofficials.html) for guidance.

Examples of the citation change on data release landing page:

Original citation:

Klunk, O.T., 2012, Bathymetry of the Bermuda Triangle: U.S. Geological Survey data
release, https://doi.org/10.5066/XXXXXXXX.

Revised citations:

Klunk, O.T., 2012, Bathymetry of the Bermuda Triangle (ver. 1.1, July 2012): U.S.
Geological Survey data release, https://doi.org/10.5066/XXXXXXXX.

Klunk, O.T., 2013, Bathymetry of the Bermuda Triangle (ver. 2, May 2013): U.S.
Geological Survey data release, https://doi.org/10.5066/XXXXXXXX.

Note that the title and DOI do not change but that the citation changes by adding
version information. Additionally, it is possible that the year of the publication will also
change.

On the landing page of the data release, include text reflecting the revision.

First release: 2012
Revised: July 2012 (ver. 1.1)
Revised: May 2013 (ver. 2.0)

Revision history:
Additionally, there should be a revision history text file available that explains exactly
what changed in each revision. (See the revision history file in the example provided
below for appending new data.)

Appending New Data:
 Addition of data to released datasets, such as updating a project’s data release with
data from a new time period, place, or new field activity, requires most of the same
steps as an original data release. In addition to the inclusion of new data, errors in
previously released data may also be corrected. The following are required when
new data is added: a new IPDS record, updated citation, updated metadata record,
updated revision history, and text on the landing page reflecting the new version.
NOTE: The new IPDS data release record is used to ensure requirements of SM
502.7 and SM 502.8 have been met. No new digital object identifier should be
created. That is, use the existing DOI for the revised data release.

For an example, see Pendleton, E.A., Ackerman, S.D., Baldwin, W.E., Danforth,
W.W., Foster, D.S., Thieler, E.R., and Brothers, L.L., 2016, High-resolution

https://internal.usgs.gov/fsp/toolbox/approvingofficials.html
https://staging-www.usgs.gov/usgs-manual/500/502-7.html
https://staging-www.usgs.gov/usgs-manual/500/502-7.html
https://staging-www.usgs.gov/usgs-manual/500/502-7.html
https://www2.usgs.gov/usgs-manual/500/502-8.html
https://www2.usgs.gov/usgs-manual/500/502-8.html

geophysical data collected along the Delmarva Peninsula, 2014, USGS Field Activity
2014-002-FA (ver. 4.0, October 2016): U.S. Geological Survey data release,
https://doi.org/10.5066/F7MW2F60

Extending the Data Structure
 There are cases in which the data structure is modified to allow the inclusion of new
data types through the addition of new tables or fields. The extended structure is
then considered a new version. These revisions are appropriate for data releases
that are stand-alone research products, rather than the data foundations of scientific
reports. In this case, the requirements include: a new IPDS record, updated citation,
updated metadata record, updated revision history, and text on the landing page
reflecting the new version. Changes should reflect a new version of the data release
(e.g., version 2.0, refer to “Version numbering” below.).

NOTE: The new IPDS data release record is used to ensure requirements of SM
502.7 and SM 502.8 have been met. No new digital object identifier (DOI) should be
created. That is, use the existing digital object identifier for the extended data
structure.

Archiving Deprecated Data:
 When data with identified errors are corrected and replaced - for example, as a new
incremental version - the version with errors should not be publicly offered, but may
be available on request, to future users. Because the errored data may have been
used to support conclusions in a publication or a policy decision, there may be future
consequences; therefore, it is essential to preserve the original data, for example in
a dark archive (an offline location for preservation), with errors intact. The filename
and accompanying documentation should make clear that the data are deprecated.
This provides a snapshot in time of the data in terms of provenance, while ensuring
that they are not recommended for future use. If size constraints make archiving a
full copy impractical, some other process should be provided for making the original
data available.

Version numbering:
 Version numbers consist of two parts, a major and a minor component, separated
by a period. In the example “version 1.2,” the number to the left of the period, “1,” is
the major component and represents the number of separate major revisions. The
number to the right of the period, “2,” is the minor component and represents the
number of separate substantial revisions.

http://dx.doi.org/10.5066/F7MW2F60
http://dx.doi.org/10.5066/F7MW2F60
https://staging-www.usgs.gov/usgs-manual/500/502-7.html
https://staging-www.usgs.gov/usgs-manual/500/502-7.html
https://staging-www.usgs.gov/usgs-manual/500/502-7.html
https://www2.usgs.gov/usgs-manual/500/502-8.html
https://www2.usgs.gov/usgs-manual/500/502-8.html

The original release is considered version 1.0. Either the major or the minor
component of the version number will be incremented when a revision is released.
When a major revision is released, the major component increases by one number
and the minor component is reset to zero (0). Substantial revisions (see definition
below), regardless of how many, do not trigger a change in the major component of
the version number. For example, if the data release was revised on seven separate
occasions for substantial revisions, the version number will be 1.7.

Minor Revisions:

Minor revisions that are so insignificant that they do not affect the use or
interpretation of the data include, but are not limited to: correcting misspelled words
in data or metadata; and improvements in presentation of ancillary information on
data landing pages. There is no version numbering system for these types of minor
revisions and therefore no need to develop a version history document.

Using a ScienceBase (sciencebase.gov) data release page as an example, a minor
revision could correct a misspelled word in the title or in the abstract. In another
example, the author may wish to revise one of the contacts listed on the landing
page. In other words, in a minor revision, the data did not change.

Action: No new version number required.

Substantial Revisions:

Substantial revisions are corrections to the data or metadata that are large enough
to affect outcomes of future data use. Such errors typically involve missing or
incorrect data values, but could also be missing or unclear annotations in table
headings or in metadata records. Substantial revisions might also improve the
usability or interpretation of the product content such as a modification in a polygon
shapefile, slightly shifting a line so that a western boundary is consistent with another
polygon shapefile that was just released.

An example of a substantial revision would be correcting a geospatial file in which a
small number of negative longitudes were entered as positive numbers. The revision
would change the incorrect longitude values to negative numbers. In a substantial
revision, some of the data have been changed.

Action: Create a new minor component number (for example, version 1.0 is changed
to version 1.1).

Major Revisions:

Major revisions include changes in the data structure and updates that add or modify
substantial amounts of data. Also included are large corrections to data, for example,
correcting a data file in which many data values were consistently incorrect as a
result of improper processing.

An example of a major revision would be a new release of a bathymetry grid when
an error was detected in the processing step that applied tide corrections. The data
themselves have undergone a significant change.

Action: Create a new major component number (for example, version 1.0 is changed
to version 2.0).

