Open Science

Aims:
To consider the importance of Open Science.

Learning Outcomes:
At the end of this course a student will
● have reflected on the tools that enable Open Science,
● have reflected on the impact Open Science on their own research and future career.

Course content:
● The goals of Open Science
 ○ reproducibility,
 ○ “nullius in verba”,
 ○ speeding up research.
● Open sessions to reflect on personal impact of Open Science.

How long: 3 hours

Open Research Data

Aims:
To have an understanding of the principles of research data management and the impact of Openness and Sharing in Research

Learning Outcomes:
At the end of this course a student will
● understand the data curation life-cycle,
● understand the principles and importance of annotation,
● how to publish data.

Course content:
● Incentives for curation.
● The data curation life-cycle.
● Methods for data publishing (such as Zenodo). Examples from different communities.
● Metadata standards.

How long: 1 day
Data Carpentry

Aims:
To have an introductory understanding of how to manipulate data as stored in SQL databases.

Learning Outcomes:
At the end of this course a student will
● understand what an SQL database is,
● be able to perform basic queries of an SQL databases,
● perform aggregation commands such as GROUP BY,
● combine data from tables using commands such as JOIN.

Course Content:
● Introduction to SQLite Manager, SQL and relational databases.
● Motivation of the use of relational databases.
● Import files to SQL.
● SELECTing data from SQL.
● Filtering data from SQL.
● COUNT, GROUP BY commands.
● JOINS, ALIASES.

How long: 2 days

Software Carpentry

Aims:
To have an introductory understanding of programming and software engineering skills to manipulate data and analyse data in reproducible fashion.

Learning Outcomes:
At the end of this course a student will
● have an introductory understanding of the Unix shell,
● be able to execute simple commands in R,
● be able to use Git.

Course content:
● Introduction to the Unix shell.
● File concepts in Unix.
● Combining Unix commands, pipes and filters.
● Shell scripts.
● Functions in R.
● Conditionals in R.
● Command line R programs.
● Best practices in R.
● Setting up Git.
● Tracking changes in Git.
● Collaboration and Open Science with Git.

How long: 2 days
Analysis

Aims:
To have an understanding of the principles necessary to analyse data in terms of being able to make decisions from large amounts of data.

Learning Outcomes:
At the end of this course a student will
- understand how to use boosted decision trees,
- understand the principles of Bayesian Networks,
- apply pipelines to build recommender systems.

Course content:
- Boosted decision trees,
- Bayesian Networks,
- Recommender systems.

How long: 2 ½ days

Visualisation

Aims:
To have an understanding of the principles of visualising data.

Learning Outcomes:
At the end of this course a student will
- understand how to use R to perform visualisation,
- be able to perform a critical assessment of effective visualisation techniques.

Course content:
- Data wrangling.
- Visualisation packages in R (such as ggplot2).
- [Optional] Visualisation in Python.
- Workshop based approaches to critical assessment of visualisation.

How long: 2 days

Computational Infrastructures
Aims:
To have an introductory understanding of cloud computing platforms and their use.

Learning Outcomes:
At the end of this course a student will
● understand the basic concepts of cloud computing,
● be able to launch a Virtual Machine on a cloud platform,
● be able use more advanced features such as batch schedulers or containers.

Course content:
● Introduction to cloud computing concepts such as IaaS and PaaS.
● Secure authentication
● Launching a VM on an IaaS cloud.
● Deploying scripts.
● Interacting with mass storage.
● Use of batch schedulers of containers.

How long: 2 days

For further questions on the curriculum, please contact
Dr. Hugh Shanahan,
Department of Computer Science,
Royal Holloway, University of London
Hugh.Shanahan@rhul.ac.uk