

Astronomy ESFRI & Research Infrastructure Cluster ASTERICS - 653477

CTA Data Provenance The Cherenkov Telescope Array

Mathieu Servillat, Catherine Boisson – LUTH, Meudon Michèle Sanguillon, Johan Bregeon – LUPM, Montpellier Mireille Louys, François Bonnarel – CDS, Strasbourg

RDA 6th meeting, Paris, 24 Sept. 2015

- Two arrays of 100 (South) and 20 (North) Cherenkov telescopes (4, 12 et 24 m in diametre)
- July 2015: Site Selection, Chile (ESO) and La Palma
- 2016: Construction phase
- Current experiments: H.E.S.S., MAGIC, VERITAS
 H.E.S.S.: experiment with 4+1 telescopes (4 x 12 m + 1 x 28 m)

- Event Reconstruction:

 photon, particle shower,
 Cherenkov light
 (faint, few nanoseconds)
- Atmosphere = calorimetre
 Simulations, assumptions
- Complex Metada, need to be structured

Very high energy data

100

Time [min]

CTA requirements for data diffusion

 Diffusion of high level data products via Virtual Observatory protocols (event listsimages, spectra, lightcurves)

Use cases:

- Provide data products that include some provenance information useful to the end user
- Filter data using provenance selection criteria
- Check the production of data (ensure quality)
- Provenance categories:
 - Data acquisition, observing configuration
 - Data processing, reduction

CTA data levels and workflow

Data Level	Short Name	Description
Level 0 (DL0)	DAQ-RAW	Data from the Data Acquisition hardware/software.
Level 1 (DL1)	CALIBRATED	Physical quantities measured in each separate camera: photons, arrival times, etc., and pertelescope parameters derived from those quantities.
Level 2 (DL2)	RECONSTRUCTED	Reconstructed shower parameters (per event, no longer pertelescope) such as energy, direction, particle ID, and related signal discrimination parameters.
Level 3 (DL3)	REDUCED	Sets of selected (e.g. gamma-ray-candidate) events, along with associated instrumental response characterizations and any technical data needed for science analysis.
Level 4 (DL4)	SCIENCE	High Level binned data products like spectra, sky maps, or light curves.
Level 5 (DL5)	OBSERVATORY	Legacy observatory data, such as CTA survey sky maps or the CTA source catalog.

DL₁

Provenance IVOA data model

CTA data model Site ObsConfig ointingMode: varchar(20) = marallel.divement.convergent.cust obstode: varchar(20) = wobble scan on of -coard: double = RA or Alt value -coord: double = Dec or Az value Array divDepth: float AuxiliarInstrument uxInstrumentID: Stri name: String is observed⊁ +telID: integer - NUL Telescope SubArray RunTypeConfig ScientificProject runType: string = Observation ,SPE,FlatFiel trackingMode: string = AltAz,RADec,slew telClass: varchar(20) = LST. MST. SST. SST-C. telPosZ: double telID **Provenance** Optics Camera #opticsID: integer +telID: integer +focallength: doubl +mirArea: double +fov: double +nbMirrors AcameraID: integer +cameraType = LST,NECTAr,Flash,SCT,GCT,ASTRI, +telID: integer **Project** +area: double +pixelSize: double pixelSep: double timeResolution: double commissioningDate: date +decommissioningDate: da **Obs Configuration** TriggerSe **Data Acquisition** Pixel is decomposed into▶ **Ambient Conditions Processing-**SlowControl Run ScienceRun CalibrationRun ty Description **ProcessingActivity** Activity Activity AgentMap Activity Collection Activity Collection Description GoodTimeIntervals Activity Data Map Description Activity Data Map DataCollectionDescription DataCollection DataAgentMap cessRights: string DataDescrip DataEntity +dataType -ng +dataType -ng +dal -string = N/A -steValues: array = vacossRights: string +description: string +label: URL ScienceData CalibData TechData #dataID: bigint +runID: bigint ProcessingConfig

CTA data model - Data Processing

- Some Custom Activities and Entities (Run, ObsConfig, ...)
- Link to Provenance data model for Data Processing

CTA data model ObsConfig

Examples:

Number of telescopes involved Field of view Pointing direction

...

Different aspects

- Filling the Provenance information
 - Structured database based on data model
 - Interface (API) for ingestion

Restitution

- Metadata attached to a data file
- PROV-N, the W3C Provenance Notation
 - → use of existing tools!

Direct Access

- IVOA protocols (Table Access Protocol, DataLink)
- But Provenance data are project dependant
 - → Provenance **Profiles** customized for CTA

PROV-N

```
entity(rave:0645m522I0049.wav.fits, [prov:type = 'std:fits']
     agent(aao:Paul Cass, [prov:type='prov:Person'])
     agent(rave:Alessandro Siviero, [prov:type='prov:Person'])
     activity(rave:act observation, 2008-02-16T13:25:24, -,
          [ prov:type = 'obs:Observation' ])
     activity(rave:act_irafReduction, 2008-03-04T09:46:57, -,
          [ prov:type = 'std:reduction' ])
wasAssociatedWith(rave:act observation, aao:Paul Cass, -,
                     [ prov:role = 'obs:Observer' ])
wasAssociatedWith(rave:act_irafReduction, rave:Alessandro_Siviero, -)
wasGeneratedBy(rave:0645m52210049.fits, rave:act_observation, -)
used(rave:act_irafReduction, rave:0645m522l0049.fits, -)
wasGeneratedBy(rave:0645m522I0049.wav.fts, rave:act_irafReduction, -)
wasDerivedFrom(rave:0645m522I0049.wav.fts, rave:0645m522I0049.fits)
```

entity(rave:0645m522l0049.fits, [prov:type = 'std:fits']

@ Kristin Riebe

