
Implementing the RDA Data Citation
Recommendations for Long Tail Research

Data
Stefan Pröll

2

Overview

 Introduction
 Recap of the WGDC Recommendations
 Long Tail Research Data
 SQL Prototype
 Git Prototype
 Conclusion

3

Data Driven Research

 Modern research is data driven
 Results are based on data
 But the results are still published in papers

 Data sets are often
 Not available or accessible
 Not cited
 Ambiguous

→ Reproducibility is at risk

4Data Citation

 Citing data may seem easy
- from providing a URL in a footnote
- via providing a reference in the bibliography section
- to assigning a PID (DOI, ARK, …) to dataset in a repository

 What’s the problem?

Page 4

5Main Challenges

 Scalability
- More and more data sets
- Growing amounts of data
- Granularity

 Infrastructure
- Sophisticated data management

is not always available
- Processes not defined well

 Dynamics
- Frequent updates
- Evolving data

 Precise identification
- Ambiguity?

Src: CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=30978545

6Granularity of Subsets

 What about the granularity of data to be identified?
- Enormous amounts of data
- Researchers use specific subsets of data
- Need to identify precisely the subset used

 Current approaches
- Storing a copy of subset as used in study -> scalability
- Citing entire dataset, providing textual description of subset
- -> imprecise (ambiguity)
- Storing list of record identifiers in subset -> scalability,
- not for arbitrary subsets (e.g. when not entire record selected)

 Would like to be able to identify precisely the subset of
(dynamic) data used in a process

Page 6

7Identification of Dynamic Data

 Citable datasets have to be static
 Fixed set of data, no changes:

- no corrections to errors, no new data being added
 But: (research) data is dynamic

- Adding new data, correcting errors, enhancing data quality, …
- Changes sometimes highly dynamic, at irregular intervals

 Current approaches
- Identifying entire data stream, without any versioning
- Using “accessed at” date
- “Artificial” versioning by identifying batches of data (e.g.

annual), aggregating changes into releases (time-delayed!)
 Would like to identify precisely the data as it existed at a

specific point in time

Page 7

8

 Research Data Alliance
 WG on Data Citation:
 Making Dynamic Data Citeable
 WG officially endorsed in March 2014
 Concentrating on the problems of

- large, dynamic (changing) datasets
- Focus! Identification of data!
- Not: PID systems, metadata, citation string, attribution, …
- Liaise with other WGs and initiatives on data citation
- (CODATA, DataCite, Force11, …)

- https://rd-alliance.org/working-groups/data-citation-wg.html

RDA WG Data Citation

9Basic Principle

Idea: Versioned data + timestamped queries

 Data: timestamped and versioned (aka history)
 Query: Timestamped

 Access: Re-execute query on versioned data with the
appropriate timestamp.

 Trick: Assign the PID to the query

S. Pröll, A. Rauber. Scalable Data Citation in Dynamic Large Databases: Model and Reference Implementation. In
IEEE Intl. Conf. on Big Data 2013 (IEEE BigData2013), 2013
http://www.ifs.tuwien.ac.at/~andi/publications/pdf/pro_ieeebigdata13.pdf

10Data Citation – Output

14 Recommendations
 Grouped into 4 phases:

- Preparing data and query store
- Persistently identifying specific data sets
- Resolving PIDs
- Upon modifications to the data

infrastructure
 2-page flyer
 More detailed Technical Report:
 https://rd-alliance.org/group/data-citation-

wg/wiki/wgdc-recommendations.html
 Reference implementations
 (SQL, CSV, XML) and Pilots

11Long Tail Research Data
Big data,

well organized,
often used and cited

Less well organized,
non-standardised

no dedicated infrastructure

“Dark data”

Amount of data sets

Data set size

[1] Heidorn, P. Bryan. "Shedding light on the dark data in the long tail of science." Library Trends 57.2 (2008): 280-299.

12Dynamic Data Citation for CSV Data

 Goals:
- Ensure cite-ability of CSV data
- Enable subset citation
- Support particularly small and large volume data
- Support dynamically changing data
- Establish links between data set and subsets
- Scalable approach without storing copies of data exports

 Why CSV data?
- Well understood and widely spread
- Small and big data settings
- Simple and flexible

13

 Advanced data infrastructure
- Large data sets
- Database driven
- Defined interfaces
- Trained experts available
-

 Required adaptions
- Ingest CSV files
- Capture subset process
- Implement dedicated query store
-
 SQL Prototype

Large Scale Research Settings

14

 Local workstations
- Smaller data sets
- Local storage and tools
- Scripting languages

 Required adaptions
- Data versioning, e.g. with Git
- Store scripts versioned as well
- Make subset creation reproducible
- Document software and OS versions
- Share repositories

Git Prototype

Small Scale Research Settings

15Prototype Implementations

 SQL based Prototype
- A) Migrates CSV data into relational database

 Git based Prototypes
- A) Git as backend only
- B) Using branches for data and scripts

 Data backend responsible for versioning data sets
 Subsets are created with scripts or queries

16Reproducible Subsets with SQL

 CSV files have the same structure as relational
database tables

 Subsetting process via SQL SELECT statements

17Data Citation – Deployment

 Researcher uses workbench or tool to identify subset of data
 Upon executing selection („download“) user gets

 Data (package, access API, …)
 PID (e.g. DOI) (Query is time-stamped and stored)
 Hash value computed over the data for local storage
 Recommended citation text (e.g. BibTeX)
 Query string

 PID resolves to landing page
 Provides detailed metadata, link to parent data set, subset,…
 Option to retrieve original data OR current version OR changes

 Upon activating PID associated with a data citation
 Query is re-executed against time-stamped and versioned DB
 Results as above are returned

 Query store aggregates data usage

18Reproducible Subsets with SQL
Prototype

19Implementation Overview

• Presentation layer
- Web interface

• Application server layer
- CSV module
- Query store module
- Persistent identification module
- Result set verification module

• Data server layer
- Database module

• Technologies: Java 8, Maven 3, MySQL 5.7, Hikari CP,
JSF, Primefaces, jQuery

•
-

20

 Demo SQL Prototype

Videos available at: http://www.datacitation.eu/

SQL Prototype Demo

21Git as Data Backend

 Git
- Distributed source code management software
- Version control
- Track changes
- Ideal for text based file formats

 Advantages of Git
- Local install possible
- Available for all platforms
- Repositories can be easily shared
- Does not require central administration
- Open source

22Query Store + Git

 Provide the same interface
- Data selection with GUI
- Git as backend
- Query store preserves CSV2SQL query
- Re-execution on top of CSV file revision
-
-

 Git as Data Backend
- Ideal for text based formats
- Simple query translation via the interface
- Version all changes by commiting
- Sharing via repositories (e.g. Github)

23Scripts and Git Branches

 Subsets are created with a scripting language (e.g. R)
- Select columns, filter records and sort result set
- Script produces CSV file

 Users store the subsetting script also in Git
- Subsetting process can be automatically executed
- The subsetting script is also stored in Git
- Metadata file describes script execution, language version, etc

 Use Git to retrieve proper data set version and re-execute
script on retrieved file

 Advantage: Simple method, Integration with a Query Store
 Disadvantage: Git commit history contains data set and

script files

24Reproducible Subsets with Git

25Reproducible Subsets with Git
Branches

 Using the Git branching model
- Branches allow separation of data and scripts
- Keeps commit history clean

• Allows merging of data files
- Use commit hash for identification

• Assigned PID hashed with SHA1
• Use hash of PID as filename

- Orphaned branch for queries and metadata files

26Reproducible Subsets with Git
Prototype

Step 1: Select a CSV
file in the repository

Step 2: Create a subset
with a SQL query (on
CSV data)

Step 3: Store the query
script and metadata

Step 4: Re-Execute!

27RDA WGDC Prototypes

 SQL Backend
 Git Backend
 Source code of all prototypes available at Github
 https://www.github.com/datascience

28Conclusion

 Query based data citation for evolving research data
- Enhances reproducibility
- Relies on data versioning and query (script) timestamping

 Implementation in small scale settings
- Git repositories can be easily shared
- Metadata included

 Implementation in large scale settings
- Versioning often already available
- Interfaces for subsetting processes can be used for the

implementation

Thank You

Questions?
Comments?

Thank you very much for your attention!
stefan.proell@tuwien.ac.at

www.datacitation.eu
@stefanproell

