(RDAE® an
DATA ALLIANCE Working Group: Practical Policy kAR
Outcomes Policy Templates:
Practical Policy Working Group,

February 2015

Version: February 4, 2015

Abstract

The RDA Practical Policy Working Group was founded in Sept. 2012. The following
goals were reached:

* Collection of policies in the RDA Wiki

* (Categorization of policies

* Survey of the 11 the most popular policy sets in 30 institutions

* Description of policy templates for these 11 policy sets

* Implementation examples for selected policies and English Language

Descriptions

Furthermore an additional Interest Group will be founded to provide various
testbeds for all RDA WG/IGs to demonstrate implementations of policy sets and
interoperability.

In this document the outcomes of the working group and the templates of the
policies are presented.

@ > @ >

RESEARCH DATA ALLIANCE Working Group: Practical Policy RESEARCH DATA ALLIANCE

Table of Contents

R 13 e o (¥ Tt T N 3
2. Contextual metadata extraction poliCiesccccccrveriiiiiniiiiiiiiiriniiiiiccrrecereneeeeeenes 7
3. Data access coNtrol POliCIes....ccccciiieeiiiiiiiiiineiiiinicneriereneeerennserenessssennsssenssssssnnns 9
4. Data backup POlICIEScceuiiiiiniiiiiiiiiiriireeierrnees e reneeesenessssenssessensssssensssssennns 11
5. Data format control POliCies....cccciiieuiiiiiiiiiiiiiiiirierrnicrerece e reneeesennssssenessnens 12
6. Data retention POlICIEScccciiiieiiiiiiiiiiiiiereer e rere e reneeesennsesenessssennssssenasasnens 13
7. Disposition POLICIES ..ccuuiiiieeiiiieiiiiiiiiiiiiiieriniireneierennsserensssesennssssenssssssnnssssensssssans 14
9. Notification POlICIESciiieeiiiiiiiiiiiiirr e reneeesennee s senesssennssssenssasnens 17
10. Restricted searching PoliCiesc.cciiiciiiiieiiiiiiiiiiiiiiiiricrienerreeeseseenesssssnssessennes 18
11. Storage coSt POlICIES..ccuuuiiiieiiiiiiiiiiircirrece e rree e rneseseensesesnsssssenssssssnsssssennns 19
12. Use agreement POlICIEScccceiiieeiiiiiniiiiinniiiineietinnieienessessenssessenssessenssssssnssssssnnes 20

DATA ALLIANCE Working Group: Practical Policy DATA ALLIANCE

1. Introduction

Computer actionable policies are used to enforce management, automate
administrative tasks, validate assessment criteria, and automate scientific analyses.
The benefits of using policies include minimization of the amount of labor needed to
manage a collection, the ability to publish to the users the rules that are being used,
and the ability to automate process management.

In cooperation with the Engagement Interest Group of the Research Data Alliance,
the Practical Policy Working Group has conducted a survey of production data
management systems to elicit the types of policies that are being enforced. The
types of data management applications included archives, digital libraries, data
grids for data sharing, and processing pipelines. The 30 surveyed sites used more
than ten different data management systems, including the integrated Rule Oriented
Data System (iRODS), dCache, Tivoli Storage Manager, Xrootd, CLASS, AFS, GPFS,
Data Direct Networks Web Object Scalar, Fedora Commons, Dataverse, LOCKS - Lots
of Copies Keep Stuff Safe, and XSEDE.

Integrity 217
Preservation 150
Access control 126
Provenance 108
Data Management plans 99
Publication 75
Replication 66
Data staging 52
Federation 37
Metadata sharing 23
Regulatory 16
Collection properties 7
Identifiers 7
Data sharing 7
Versioning 7
Licensing 6
Format 6
Data Life Cycle 6
Arrangement 5
Processing 5

Results of a survey of 30 institutions for highest priority policies

@ @

Working Group: Practical Policy

Across these diverse environments, the survey identified eleven generic policies
that were of interest to a majority of the institutions and are common to almost all
data management systems. The policies ranged from management of data access, to
control of backups, to provision of contextual metadata:

Contextual metadata extraction
Data access control

Data backup

Data format control

Data retention

Disposition

Integrity (including replication)
Notification

. Restricted searching

10. Storage cost reports

11. Use agreements

©ENO VA WN P

The organization of a set of policies for a data management system can be expressed
as a concept graph that defines relationships between policy concept components.
Within this paper, a collection is viewed as an ordered arrangement of digital
objects with associated metadata for provenance, description, and administration
information. Each collection is assembled for a purpose that reflects the goals of the
organizing community. Thus the overriding goal may be the construction of an
archive, or digital library, or data sharing environment. The expectation is that the
types of operations performed within the data management environment will be
similar (discovery, storage, access, manipulation), but the organizing goals may be
quite different.

The collection purpose defines the properties that should be maintained for each
digital object within the collection. Example properties can include preservation
assertions such as authenticity, integrity, chain of custody, and original
arrangement; or be based on digital collection assertions such as description and
arrangement by subject; or be based on systemic properties of the collection such as
completeness, correctness, and consistency.

To enforce a desired property, policies are defined that control the execution of
administrative procedures. The application of a policy may be limited, for example,
to members of a user group, or files in a collection, or a particular type of data
format, or files on a specific storage resource. The limitations are expressed as
constraints within the policy. The evaluation of a constraint typically requires
access and manipulation of state information (metadata) about digital objects,
collections, users, and storage resources.

(RDAES @

DA ALANCE Working Group: Practical POIicy DATA RLLIRNCE

Each procedure may encompass multiple operations that are chained together into a
workflow. An operation may require use of state information that has been stored
as metadata on the files in the collection, or metadata stored about storage systems,
or metadata stored about users. Each execution of an operation will update the
state information, which must be consistently stored and managed.

Policies can be defined that periodically verify assertions about the collection. A
common verification policy is analysis of the integrity of the files. This requires
checking whether files have been corrupted, and whether the required number of
replicas is still available, and whether the replicas are correctly distributed across
storage resources.

Figure 1 lists the concept graph that is used to define policy components. Note that
the data management environment must provide a way for the policies to be
automatically triggered. This may be at a policy enforcement point within the data
management infrastructure, or may be an event that is initiated by a user, or may be
driven periodically by a timer. If the events are triggered within the middleware
infrastructure, it becomes possible to ensure that the policies are applied to control
actions by all of the clients that access the system. The policies can be enforced
across distributed storage systems, across institutions, and across projects.

Policy-based Data Management Concept Graph

[

SubType ‘(Replication)
¥ Policy Isa Isa
Archive (Checksum) 'sa
Data grid Policy K !
Collection S’ Digital Has —>
Digital Library r— Attnbute

" Quota K Isa
_ Processing Pipeline J Policy

" Y Isa
Integrity }\ Defines [Datatype |

Pali
L . Isa
‘ Authenticity)’\ \
\) lsa

Object
Has k

Updates

Defines Contrals

Access = |sa

Updates
| control | |Sa

Defines —P{ Collection \MA “ DATA_REPL_NLM DATA_CHECKSUM J
. s AN

SubType
Has

HasFesture L GetUserACL
/ HasFeature " Pperiodic /)
r 3 Assessment | Workflow Isa

J
Completeness J Criteria /' SetDataType l
\ s
\ HasFeature | Policy] Chains Isa

- . \‘—"/ F ——

Correctness lsa - SetQuota

HasFeature
Invokes Isa \,‘) ‘
Consensus Isa DataObjRepl
) “‘ _ Isa

N SysChksumDataObj

Cunsustencv ‘ Operation

Figure 1. Policy Components

(RDAES @

Working Group: Practical Policy

This report provides policy templates for the production policies. Each policy
template contains:

* Policy name

* Example constraints that control application of the policy

e State information that is needed to evaluate the constraint

* Example operations that are performed by the policy

¢ State information that is needed to execute the operations

For all policies, a description of the motivation for the policy is provided. Example
policies that implement the management objectives are presented in an additional
document “Implementations: Practical Policy Working Group, September 2014".

Each of the generic policy areas actually represents a set of policies. Policies are
needed to set environmental variables that control the execution of the policy; to
enforce desired collection properties; and to validate assessment criteria.

Each policy example can be modified to implement the specific policy required by an
institution. Thus the policies should be treated as examples of approaches for
controlling a desired property of a data management system.

@ @

Working Group: Practical Policy

2. Contextual metadata extraction policies

The creation of provenance and descriptive metadata defines a context for
interpreting the relevance of files in a collection. Depending upon the data source,
there are multiple ways to provide metadata:
* Extract metadata from an associated document. An example is the medical
imaging format DICOM.
e Extract metadata from a structured document which includes internal
metadata. Examples are FITS for astronomy, netCDF, and HDF.
e Extract metadata by parsing patterns within the text within a document.
* Identify a feature present within a file and label the file with the location of
the feature that is present within the file.
This policy area focuses on metadata associated with files and collections.

Contextual metadata extraction policy template

The template illustrates types of constraints, the metadata needed to evaluate the
constraint, and types of operations that may be applied. Multiple types of metadata
may be relevant, including information about provenance, description, data
structure, representation, administration, and events. For each type of metadata,
there exist standard schemas that may be used to name and organize the metadata.
Thus event metadata is typically managed using the PREMIS schema.

Contextual metadata Constraint State attributes for Constraint
for provenance | On file File_name
for description | On collection Collection_name
for structuring | On user User_name
for representation | On storage Storage_name
for administration | Operations State Attributes for Operation
for event | Extract metadata Attribute_name

Attribute_value

Attribute_unit

Source_file

Source_collection

Register metadata Attribute_name

Attribute_value

Attribute_unit

Destination_file

Destination_collection

Metadata_creation_time

Metadata_modification_time

Verify metadata load File_name

Attribute_name

(RDAEE

DATA ALLIANCE Working Group: Practical Policy

Attribute_value

Attribute_unit

Verify metadata names

Attribute_name

HIVE_reserved_vocabulary

Set ACL on metadata

File_ID

Metadata_ID

ACL_type

(RDAES @

Working Group: Practical Policy

3. Data access control policies

Most data management systems provide access controls that limit the ability to
modify or add files to a collection, while allowing the public to read public data. The
approaches that are taken include:

* Access permission based on the role of the user (all users with a given
role are given access to a file or collection)

* Access permission based on an access control list (only named persons or
persons with membership in a named group are given access to a file or
collection)

* Access permissions that differentiate between read, create, modify, add
metadata

* Access permissions that are inherited from the collection

The access controls assume that each user has a unique name, that each file has a
unique name, that each collection has a unique name, that each access role has a
unique name, and that each access permission has a unique name. In many data
management systems, multiple naming conventions may be used. For example, a
user may be identified by:

* User_ID, a unique number assigned to the user

* User_name, an ASCII string assigned to the user
The policies may be written based on either the User_ID or the User_name.

An access control can be viewed as a relationship that is established between the
unique name for the user, the unique name for a file, and the unique name for the
operation performed upon the file. The relationship is stored in an information
catalog within the data management system. The operations that are performed by
an access control policy will need to include:

* Establishment of unique identities for users, files, collections

* Establishment of an access control on a file or collection

* Validation of the access control for authorizing each type of operation

* Verification of the access controls that are set on files and collections for

audits

It may be necessary to include time stamps to log when an access control was set or
changed. The information may be stored as metadata on the access control, or as
events logged in an audit trail, or as events that are managed in triple store.

Data access control template:

This template includes operations to establish unique names for users, files,
collections, and role; operations to set access controls by file or through inheritance
from a collection; operations to handle access to replicas; and operations to audit
which access controls have been established.

@

Working Group: Practical Policy

Policy type

Constraint

State attributes for Constraint

Access data

By role (type of person)

User_ID

Role_type per User_ID

Role_ACL

By ACL (read permission)

User_ID

File_name

IACL per File_name per User_ID

Operations

State Attributes for Operation

Set person name

User_ID

User_name

Set file name

File_ID

File_name

Set role per person

User_ID

Role_type

Set ACL on file

File_ID

User_ID

ACL_type

Set sticky bit on collection

Collection_name

Sticky-bit_value

Set access on replication

File_ID

Replica_number

User_ID

ACL_type

Execution - check ACL on read

File_name

User_ID

ACL_type

Verify ACLs

File_ID

Replica_number

User_ID

ACL_type

The access controls are typically enforced directly by the data management system.
However, periodic rules to audit the access controls that have been set are also

needed.

10

(RDAES @

Working Group: Practical Policy

4. Data backup policies

A backup corresponds to a copy of a collection that is made at a specific date. A
sequence of backups can be made, enabling versions of data files to be tracked over
time. Typical state information includes defining the backup time interval, where
the backups should be created, and when the backups should be checked.

Data backup policy template:

Backups Constraint State attributes for Constraint
By time Periodic time interval
By collection Collection_name
By user User_ID
Operations State Attributes for Operation

Set periodic time interval

Backup_periodicity

Create file copy

File_name

Storage_repository_name

Backup_collection_name

Set backup time stamp on file

File_time_stamp

Verify backups

File_time_stamp

11

@

Working Group: Practical Policy

5. Data format control policies

Many collections restrict the types of data formats that will be acceptable for
ingestion. Policies that identify data formats that are not allowed can either send
warning messages, or move the file to a staging area, or attempt to transform the
data format. Policies can be written to manage staging areas based on the type of
data format, sorting selected data formats into specified collections. The associated
operations include creating metadata to list the file format type, checking file
formats, and verifying file formats.

A list of accepted formats can be chosen from a Data Type Registry that is built up by

the RDA Working Group “Data Type Registries”.

Data format control policy template

Format Requirements

Constraint

State attributes for Constraint

On ingestion of file

Periodic check

Time interval between checks

For specific format type

File-format_type

For collection

Collection_name

Operations

State Attributes for Operation

Set file format

File_ID

File_format_type

Get file format

File_ID

File_format_type

Check file format

File_ID

File_format_type

Convert file format

File_ID

File_format_type

Desired_file_format_type

Verify file format

Collection_name

File_name

File_format_type

Desired_file_format_type

12

(RDAES @

Working Group: Practical Policy

6. Data retention policies

There are multiple types of retention that may be controlled by policies:
* Retention based on a data expiration date. The expiration date is checked to
verify whether a file is a candidate for application of a disposition policy
* (Cache management based on the age of files. The oldest files are removed
from the cache to make room for new files.
* Retention based on migration. Files in a staging area are moved to an archive
after passing quality assurance tests.

Data retention policy template

Data retention Constraint State attributes for Constraint
By file File_name
By collection Collection_name
By storage system Storage_name
Operations State Attributes for Operation
Set retention period File_name

Retention_period

Check retention period File_name

Retention_period

Verify retention period File_name

Retention_period

13

@

Working Group: Practical Policy

7. Disposition policies

Once files have been identified that have exceeded a retention period, a disposition
policy can be applied to either delete or archive the files. For the above example for
a data expiration policy, a disposition policy can be created that migrates the
expired files to an archive collection, or that deletes the expired files.

Disposition policy template

Disposition

Constraint State attributes for Constraint
By file File_name

By collection Collection_name

Operations State Attributes for Operation

Define disposition policy

Disposition_policy_type

Set disposition policy

File_name

Collection_name

Disposition_policy_type

Apply disposition

File_name

Collection_name

Disposition_policy_type

Audit_trail

Event_log

Verify disposition

File_name

Collection_name

Disposition_policy_type

Event_log

14

@ @

Working Group: Practical Policy

8. Integrity policies

The management of integrity may require multiple independent steps that are
applied to each file:
* Verification of integrity on ingestion through validation of a checksum
* Replication of the file across multiple storage locations to ensure the ability
to replace a corrupted file.

* Periodic verification that the files are not corrupted, that the required
number of replicas exist, and that the replicas are correctly distributed.
Administrative information is saved for each file to track the number of replicas, the

places where the replicas are stored, and the checksums for the files.

Integrity policy template
The choice of how integrity is ensured or verified can be done automatically through
Policy-Enforcment-Points, or periodically as an administrative policy.

Integrity Constraint State attributes for Constraint
Periodic check Time_interval
For collection Collection_name
For file File_name
For storage system Storage_system_name
Operations State Attributes for Operation
Set checksum File_ID

File_checksum

Create replica File_ID

File_replica_number

File_replica_location

File_replica_creation_time

File_physical_path_name

File_replica_checksum

Verify checksum File_ID

File_checksum

Verify replicas File_id

File_replica_number

File_replica_checksum

File_storage_location

The administrative information (state attributes) must be consistently managed.
When a file is moved to a new storage system, the administrative information must
be updated correctly. Note that on ingestion, a manifest, such as Bagit, may list the
checksum for each file that is ingested. This manifest could be parsed, with the

15

(RDAES RDAES

DATA ALLIANCE Working Group: Practical Policy DATA ALLIANCE

checksum extracted and stored for each file. This ensures that the file was not
corrupted during the initial transfer.

16

@ @

Working Group: Practical Policy

9. Notification policies

There are multiple types of notification that may be triggered by an event.
Examples include:
* E-mail to an administrator
* Message sent to an external message queue for processing
e Twitter post
The types of events that are tracked may include:
* Creation of a new collection
* Change of access control permission on a collection
* Deposition of a file into a collection
* Deletion of a file
* Creation of a new user account
* Deletion of a user account
* Federation with another data grid

Notification policy template

Notification Constraint State attributes for Constraint
For specific event type Notification_event_type
For user User_ID
For collection Collection_name
For file type File_type
For file File_name
For storage system Storage_system_name
Operations State Attributes for Operation
Set event notification type Notification_event_type

Notification_type

Notification_type_address

Event notification Notification_event_type

Notification_type

Notification_type_address

Event_log

Search events Notification_event_type

Event_log

17

(RDAES @

Working Group: Practical Policy

10. Restricted searching policies

Restricted searching can be viewed as a form of restricted access control. A typical
example is restricting the ability of users to see any files except their own files. This
limits browsing to the viewing of files for which they have read access. Other types
of restricted searching include:

* Limiting the ability to search metadata to only those files for which the user
has read access.

* Limiting the ability to search metadata to a subset of available metadata for a
file. In effect, specific metadata attributes may be restricted to administrator
access across all files within the system.

* Limiting the ability to search system level metadata, such as internal function
mapping attributes.

Restricted search policy template

Restricted searching Constraint State attributes for Constraint
By collection Collection_name
By user group User_group_ID
By user User_name
By collection property Collection_name

Collection_metadata_name

By file property File-name
File_metadata_name

By event Event_type

Operations State Attributes for Operation

Issue query Metadata_name

18

@>

Working Group: Practical Policy

11. Storage cost policies

The ability to generate usage reports and the associated storage cost is needed for
both planning and accounting. The approach can be integrated with the use of
quotas to limit the maximum allowed storage usage, which in turn limits the

maximum cost.

Storage cost policy template

Storage cost tracking

Constraint

State attributes for Constraint

By storage system

Storage_system_name

By user group

User_group_ID

By user User_name
By collection Collection_name
Operations State Attributes for Operation

Record usage

Storage_repository_name

User_name

User_usage

Audit usage

Storage_repository_name

User_name

User_usage

Generate storage cost report

Report_name

19

(RDAEE

Working Group: Practical Policy

12. Use agreement policies

Not all policies can be implemented as computer actionable rules. The creation of a
use agreement policy is typically negotiated at the time an account is established for
a user, and involves the receipt of a signed document. It is possible to associate an
attribute with each user that defines whether or not the signed use agreement has

been received.

Use agreement policy template

Signing of use
agreements

Constraint

State attributes for Constraint

Operations

State Attributes for Operation

Store agreement

User_name

Creation_date

Agreement_name

Agreement_type

Audit agreement

User_name

Creation_date

Agreement_name

Agreement_type

20

