
Memory of
the World

United Nations
Educational, Scientific and

Cultural Organization

The Software
Heritage

Acquisition
Process

Version 1.0

October 10, 2019

List of the authors

Short title SWHAP
Full title Software Heritage Acquisition Process
Authors: Laura Bussi, Dept. of Computer Science, University of Pisa 〈l.bussi1@studenti.unipi.it〉

Roberto Di Cosmo, Software Heritage, Inria and University of Paris 〈roberto@dicosmo.org〉
Carlo Montangero, Dept. of Computer Science, University of Pisa 〈carlo@montangero.eu〉
Guido Scatena, Dept. of Computer Science, University of Pisa 〈guido.scatena@unipi.it〉

Date October 10, 2019
Contact Roberto Di Cosmo 〈roberto@dicosmo.org〉

Abstract
The source code of landmark legacy software is particularly important: it sheds insights in the

history of the evolution of a technology that has changed the world, and tells a story of the humans
that dedicated their lives to it.
Rescuing it is urgent, collecting and curating it is a complex task that requires significant human
intervention.
This document presents the first version of SWHAP, the Software Heritage Acquisition Process: a
protocol for the collection and preservation of software of historical and scientific relevance. SWHAP
results from a fruitful collaboration of the University of Pisa with Software Heritage in this area of
research, under the auspices of UNESCO, and has been validated on a selection of software source
code produced in the Pisa area over the past 50 years.

Acknowledments L. Bussi wants to acknowledge the Software Heritage Foundation for the
scholarship that supported her work and the Department of Computer Science of the University of
Pisa for hosting her while working on SWHAPPE.

License This work is distributed under the terms of the Creative Commons license CC-BY 4.0

SWHAP Guidelines (v. 1.0) page 1 of 34

https://creativecommons.org/licenses/by/4.0/

October 10, 2019

Contents

1 Introduction 3

2 The process, abstract view 4
2.1 Phases . 4

Collect . 4
Curate . 4
Archive . 6
Present . 6

2.2 An iterative process . 6
2.3 Resources needed by the process . 7

Warehouse . 7
Depository . 7
Workbench . 7
Curated source code deposit . 7
Catalogues and journals . 7

2.4 Roles in the process . 7
Collector . 7
Deposit engineer . 8
Curator . 8
Archive engineer . 8
Presentation designer and Web engineer . 8

2.5 Implementation requirements . 8
Long term availability . 8
Historical accuracy . 8
Traceability . 8
Openness . 9
Interoperability . 9

3 The process, a concrete view 10
3.1 General Motivation for using Git and GitHub . 10
3.2 SWHAP - GitHub correspondence . 11
3.3 Process overview . 11
3.4 The SWHAP template . 11
3.5 The process, step by step . 13

Instantiation . 13
Collect phase . 13
Curate phase . 14

3.6 Iteration . 15

4 A walkthrough on a running example 16
Starting the process . 16
Instantiation . 16
Upload files in raw_materials . 17
Unpack the source code in the browsable_source directory 17
Create Depository . 19
Final depository . 22

SWHAP Guidelines (v. 1.0) page 2 of 34

October 10, 2019

Curate the code . 22
(Re-)Create the development History . 25
Create the final repository . 25
Publish the repositories and trigger Software Heritage acquisition 27
Fill the Workbench metadata . 31

5 Appendix A - Tools that can help 31

6 Appendix B - A few tips on Github 33

1) Introduction

Software is everywhere, binding our personal and social lives, embodying a vast part of the technological
knowledge that powers our industry, supports modern research, mediates access to digital content and
fuels innovation. In a word, a rapidly increasing part of our collective knowledge is embodied in, or
depends on software artifacts.

Software does not come out of the blue: it is written by humans, in the form of software Source Code, a
precious, unique form of knowledge that, besides being readily translated into machine-executable form,
should also “be written for humans to read” (Abelson and Julie Sussman [1]), and “provides a view into
the mind of the designer” (Shustek [6]).

As stated in the Paris Call on Software Source code as Heritage for sustainable development (Report [5]),
from the UNESCO-Inria expert group meeting, it is essential to preserve this precious technical, scientific
and cultural heritage over the long term.

Software Heritage is a non-profit, multi-stakeholder initiative, launched by Inria in partnership with
UNESCO, that has taken over this challenge. Its stated mission is to collect, preserve, and make readily
accessible all the software source code ever written, in the Software Heritage Archive. To this end, Software
Heritage designed specific strategies to collect software according to its nature (Abramatic, Di Cosmo,
and Zacchiroli [2]).

For software that is easily accessible online, and that can be copied without specific legal authorizations,
the approach is based on automation. This way, as of September 2019, Software Heritage has already
archived more than 6 billion unique source code files from over 90 million different origins, focusing in
priority on popular software development platforms like GitHub and GitLab and rescuing software source
code from legacy platforms, such as Google Code and Gitorious that once hosted more than 1.5 million
projects.

For source code that is not easily accessible online, a different approach is needed. It is necessary to cope
with the variety of physical media where the source code may be stored, the multiple copies and versions
that may be available, the potential input of the authors that are still alive, and the existence of ancillary
materials like documentation, articles, books, technical reports, email exchanges. Such an approach shall
be based on a focused search, involving a significant amount of human intervention, as demonstrated by
the pioneering works reconstructing the history of Unix (Spinellis [7]) and the source code of the Apollo
Guidance Computer (Burkey [4]).

This document presents the first version of SWHAP, the SoftWare Heritage Acquisition Process to
rescue, curate and illustrate landmark legacy software source code, a joint initiative of Software Heritage

SWHAP Guidelines (v. 1.0) page 3 of 34

October 10, 2019

and the University of Pisa, in collaboration with UNESCO.

Section 2 provides an abstract view of SWHAP, its steps, documents and resources. No specific assumptions
on the tools, platforms and technologies that may be used to enact it are made, but some requirements
are made explicit. Section 3 describes how the abstract process is implemented at the University of Pisa
by leveraging the Git toolset and the GitHub collaborative development platform. This implementation is
named SWHAPPE (SWH Acquisition Process Pisa Enactor) in this document. Finally, Section 4 provides
a walkthrough on an annotated example, using a real world medium-sized software project (Attardi and
Flagella [3]).

2) The process, abstract view

This section describes SWHAP, the acquisition process for software artifacts at an abstract level, that is,
without making specific assumptions on the tools, platforms and technologies that may be used to perform
the various operations described here.

2.1) Phases

The activities involved in the acquisition process can be organized in the following four phases, of which
the first one is conservative, i.e., it is devoted to save the raw materials that the other phases will build
upon.

Figure 1 provides a pictorial view of the process, its phases, data stores and roles.

Collect

The purpose of this phase is to find the source code and related materials and gather it as is in a physical
and/or logical place where it can be properly archived for later processing.

Various strategies are possible for collecting the raw materials: a dedicated team may proactively search
for the artifact of specific software that has been identified as relevant (pull approach), or a crowdsourcing
process may be set up to allow interested parties to submit software that has not been previously identified
(push approach).

Source code can be provided in a digital or physical form. Typically, source code for old machines (such as
the first Italian computer, CEP, now exposed in the Pisa museum of computing) is available only as paper
printouts that may even include hand-written comments: all these materials deserve to be preserved.

Related materials can include research articles, pictures, drawings, user manuals: all of these are part of
the software history and need to be preserved as well as the source code.

At this stage of elaboration of the process, this phase is better thought of as abstract, in the sense that
several, more focussed descriptions should be provided to cater for the different situations identified. The
same applies to the Curator role, which may need different capabilities in different scenarios.

Curate

The purpose of this phase is to analyze, cleanup and structure the raw materials that have been collected.

SWHAP Guidelines (v. 1.0) page 4 of 34

October 10, 2019

Figure 1: Source code acquisition process.

SWHAP Guidelines (v. 1.0) page 5 of 34

October 10, 2019

Preparing software source code for archival in Software Heritage requires special care: the source code
needs to be cleaned up, different versions with their production dates need to be ascertained, and the
contributors need to be identified in order to build a faithful history of the evolution of the software over
time.

Also, proper metadata should be created and made available alongside the source code, providing all the
key information about the software that is discovered during the curation phase. We recommend to use the
vocabulary provided byCodeMeta as an extension to schema.org (see https://codemeta.github.io/terms/);
this includes the software runtime platform, programming languages, authors, license, etc.

Particular care is required to identify the owners of the different artifacts, and obtain if needed the
necessary authorizations to make these artifacts publicly available1.

Archive

The purpose of this phase is to contribute the curated materials to the infrastructures specialized for
each kind of materials: Software Heritage for the source code, Wikimedia for images or videos, open
access repositories for research articles, Wikidata for software descriptions and properties, and so on.

Well established guidelines are available for contributing materials to Wikimedia (see https://commons.wikimedia.org/wiki/Commons:First_steps/Contributing)
and Wikidata (see https://www.wikidata.org/wiki/Wikidata:Data_donation), hence we will focus
primarily on curating and contributing the software source code to Software Heritage, a process that is
new and may require rather technical steps.

Present

The purpose of this phase is to create dedicated presentations of the curated materials.

Once the curated materials are made available in the dedicated infrastructures, it is possible to use it to
create presentations for a variety of purposes: special events, virtual or physical expositions for museums
or websites.

For this, the archived materials need to be referenced using the identifiers that each platform provides
for its contents. Software Heritage provides intrinsic persistent identifiers that are fully documented at
https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html

The presentation phase is out of the scope of this document, and as such we are currently not providing a
supporting implementation. Anyway, a good example of what can be done is the https://sciencestories.io
website.

2.2) An iterative process

New information may arise at any time: new raw materials may be discovered, refined information may
be identified that needs to be added to the curation, and mistakes may need to be corrected. Hence, the
overall process must be seen as iterative, in the sense that, when new data are available, the pertinent phase
can be re-entered and the process enacted once more from there to update all the relevant information.
This suggests that, whenever possible, the data stores should be fully versionable, not to loose historical
information about the acquisition process itself.

1This is a complex issue, that may need to be handled according to country-specific regulations and is out of the scope of
the present document. In the United States, one may leverage the “fair use” doctrine, see for example the detailed analysis
presented in https://www.softwarepreservationnetwork.org/bp-fair-use/

SWHAP Guidelines (v. 1.0) page 6 of 34

https://codemeta.github.io/terms/
https://commons.wikimedia.org/wiki/Commons:First_steps/Contributing
https://www.wikidata.org/wiki/Wikidata:Data_donation
https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html
https://sciencestories.io
https://www.softwarepreservationnetwork.org/bp-fair-use/

October 10, 2019

2.3) Resources needed by the process

As any process supported digitally, SWHAP needs both human and technical resources to be enacted.

First of all, several data stores and working areas are needed, to save and make public the intermediate
products, which are themselves of value, as already mentioned, and to pass the collected information
across the phases. These are shown in the lower part of Figure 1, and are summarized here.

Warehouse

A physical location where physical raw materials are safely archived and stored, with the usual acquisition
process2.

Depository

A virtual space where digital raw materials are safely archived. The raw digital materials found in the
Depository are used in the Curation phase to produce the source code that Software Heritage can ingest
in the Archive phase.

The Depository holds also the related raw materials that may be elaborated and deposited in locations
like WikiData, WikiMedia etc. - referred to as Wikies in fig. 1 - in the other phases.

Workbench

Any implementation of the process will need a virtual space and working environment where the activities
can be carried out, with support for temporary storage and for logging the various operations in a journal.

Curated source code deposit

A fully versioned repository, holding the reconstructed development history of the source code, in view of
its transfer to Software Heritage.

Catalogues and journals

As shown in fig. 1, according to the best practices of the archival sciences, each phase shall produce both
a Catalogue of its products and a Journal recording its activities - who did what, and when. A list of the
Actors involved in the process is also necessary. Provision to store all these information safely has to be
foreseen in any supporting implementation.

2.4) Roles in the process

With respect to the human resources, several roles are needed to enact the process, as indicated in the
top part of fig. 1. Here is a short summary of the involved capabilities.

Collector

Searches and receives the raw materials. Identifies, classifies and separates source code and ancillary
materials.

2See for example https://collectionstrust.org.uk/spectrum/.

SWHAP Guidelines (v. 1.0) page 7 of 34

https://collectionstrust.org.uk/spectrum/

October 10, 2019

Deposit engineer

Masters the procedures to archive physical and digital materials, in the local context.

Curator

Prepares the version history, identifying the authors and other contributors. Provides a context to the
source code, choosing among the ancillary materials.

Archive engineer

Masters the procedures to transfer the curated source code to SWH and to publish the context in the
Wikies.

Presentation designer and Web engineer

These are out of the scope of this document, and are mentioned only to note that, though most of the
presentations of the archived software will be on line, the abilities to design the contents of a presentation
should be considered separately from the technical ones.

Remark the technical resources described above in abstract terms, may be implemented in a variety of
ways. For example, one can imagine a single Depository for all the software projects that are collected,
but it is also possible to use a separate Depository for each software project, and the same holds for all
the other areas.

Remark the roles indicated above need not necessarily be played by different persons, e.g., Collector and
Curator may be the same person, nor be played by a unique person, e.g., there can be several cooperating
Curators, in case of large systems.

2.5) Implementation requirements

The abstract process may be implemented using different tools, platforms and technologies, as long as the
following key requirements are satisfied.

Long term availability

The places where the artefact (both raw and curated) are stored must provide sufficient guarantees of
availability over the long term. These places may be physical (warehouses), or logical (depositories).

Historical accuracy

Any supporting implementation should support the faithful recording of the authorship of the source code
as well as of the reconstruction process, e.g., via a flexible versioning system.

Traceability

It must be possible to trace the origin of each of the artifacts that are collected, curated and deposited.
For physical materials, we refer to common practice3. For digital artifacts, it is recommended to keep
a journal of all the operations that are performed, and to automate them as much as possible, as the

3See for example in https://collectionstrust.org.uk/spectrum/.

SWHAP Guidelines (v. 1.0) page 8 of 34

https://collectionstrust.org.uk/spectrum/

October 10, 2019

collection and curation process may require several iterations.

Openness

Any supporting implementation should be based on open and free tools and standards.

Interoperability

Any supporting implementation should provide support for the cooperation and coordination of the many
actors playing the many roles of the acquisition process.

SWHAP Guidelines (v. 1.0) page 9 of 34

October 10, 2019

3) The process, a concrete view

In order to implement SWHAP, the first step is to decide how to instantiate the needed storage and
working areas: Warehouse, Depository, Curated source code deposit and Workbench.

The Warehouse is quite similar to the usual storage area where museums preserve their collections; it will
need to be set up in a specific physical location, following the well established process for museums, so we
will not cover it in this guide.

The other areas, which are virtual spaces, can very well be set up using distinct digital platforms, but it is
also possible to instantiate all of them on a single platform.

This choice was made for the SWHAP Pisa Enactor (SWHAPPE), the implementation adopted by the
SWHAP@Pisa project: SWHAPPE exploits the collaborative platform GitHub (https://github.com/)
as a host platform for all the virtual support areas of the process.

The solutions adopted in SWHAPPE are described in detail in this section, together with their rationale.

3.1) General Motivation for using Git and GitHub

The choice of Git as the designated tool for traceability and historical accuracy, and of GitHub as the
unifying platform to support the SWHAP process proceeds from several considerations that we review
below.

First of all we discuss the choice of Git. One of the key requirements set forth for SWHAP is the need to
ensure full traceability of the operations performed on the recovered digital assets. This means that each
of the virtual places must provide means to record the history of the modifications made to the digital
assets, with information on who did what and when. It is very convenient to use the same tool in all of the
virtual places of the process, as this reduces the learning effort and streamlines the process. All modern
version control systems provide the needed functionality, and we have chosen Git as our standard tool, as
it is open source (another of our requirements) and broadly adopted. Git is a powerful tool, and requires
some expertise to make the most out of it. However, a large part of the process is scriptable, and this will
hide the underlying complexity to the final user, which can then focus on the main issue: curating and
preserving the code and its history.

Another important motivation for our choice of Git is the ability to support historical accuracy, i.e.,
providing a faithful view of the history of both the recovered source code and the acquisition process,
as prescribed by the SWHAP key requirements. This is properly accommodated by the commit and
versioning mechanisms offered by Git, that allow to separate authors from committers: this way on can
record both the story of the original software and the story of its curation.

Finally, we had to choose one of the many online platforms that allow to collaborate using Git. GitHub,
GitLab.com and Bitbucket are the most known ones and are all regularly archived in Software Heritage, so
that long term availability of their contents is preserved, no matter which one of these platforms is chosen.

Among all these platforms, GitHub is by far the most popular and active, and is also the platform adopted
by the University of Pisa, so it was a natural choice, and we believe this will make the learning curve
gentler for most SWHAP adopters.

In the following, we provide detailed guidelines to instantiate the process using Git on GitHub. We
think that most of what is described in the guide can be easily adapted to any of the other Git-based
collaborative platforms.

SWHAP Guidelines (v. 1.0) page 10 of 34

https://github.com/
https://github.com/

October 10, 2019

3.2) SWHAP - GitHub correspondence

SWHAPPE is a straightforward implementation of the abstract process, which concretizes the (logical)
areas described above by means of repositories in GitHub: there are three repositories for each source
code acquisition, one for each area of the abstract process:

Workbench repository, to implement the Workbench, i.e. a working area where one can
temporarily collect the materials and then proceed to curate the code;

Depository repository, to implement the Depository, where we can collect and keep separated
the raw materials from the curated source code;

Source Code repository, to implement the Curated source code deposit, where we store the
version history of the code; this version history is usually “synthetic”, rebuilt by the curation
team, for old projects that did not use a version control system.

Let’s remark that SWHAPPE has different Workbench and Depository repositories for each code acqui-
sition, but it would also be possible to use a single Workbench repository and/or a single Depository
repository to work on all the collected software, provided one maintains a well-organised directory structure
which keeps the codes separated. On the other hand, we need a Source Code repository for each software
project, to be actually ingested in the Software Heritage archive.

3.3) Process overview

GitHub features template repositories that can be instantiated whenever needed (see

https://help.github.com/en/articles/creating-a-template-repository). We used this feature in SWHAPPE,
and designed a repository, SWHAP-TEMPLATE, that embodies the core support to enact the process.
Its structure and use is shown in figure 2. In the picture and in the following SWName is a variable that
takes the name of the acquired code as its value at each instantiation.

Once SWHAP-TEMPLATE has been instantiated, the SWName-Workbench repository so created need
to be cloned to the user’s machine, so that he can work on the collected files locally - the Git clone
mechanism ensures that these changes can be safely moved to the original repository, for publication and
sharing with other actors in the acquisition.

We create two dedicated branches4, that allow to track separately the operations that will be later moved
to the Depository and the Development History Deposit: Depository, to contain the raw materials and
the browsable sources as well as the metadata, and SourceCode to organize the source code in view of
the reconstruction of its development history. Finally, the Depository and SourceCode branches become
two repositories: the latter is shipped to the Software Heritage archive, the former is published by the
organization promoting the acquisition.

Figure 2. Overview of the SWHAPPE process.

3.4) The SWHAP template

The structure of the template is shown in Fig. 3.

First of all, we can see a correspondence between the Depository presented in the process and the area
provided by raw_materials and browsable_source: indeed, these two folders will be moved in order to
instantiate the Depository, once they have been loaded, the former with the original materials, just as they

4More information on Git branches can be found in Appendix B.

SWHAP Guidelines (v. 1.0) page 11 of 34

https://help.github.com/en/articles/creating-a-template-repository

October 10, 2019

Figure 2: Overview of the SWHAPPE approach

SWHAP Guidelines (v. 1.0) page 12 of 34

October 10, 2019

have been found or submitted, the latter with a first revision of the source code, made accessible through
the GitHub web interface, e.g., archives should be decompressed, code transcribed from pictures, etc.

The source folder is provided as the starting point for the creation of the Source Code Git repository,
in the curation phase. The curator has to recognize each major version of the code, and refactor it
accordingly - one separate folder per each version. To create the Source Code Deposit, however, we exploit
the commit and versioning mechanisms of Git.

As for the metadata folder, here we record all the information about the software and the acquisition
process (catalogue, actors, journal, etc.). The guidelines to fill this part are given in the template itself.

Figure 3: Top structure of the Template repository.

3.5) The process, step by step

Instantiation

The first step is to create an instance of the SWHAP-TEMPLATE5, that should be named SWName-
Workbench, and then to clone it to obtain a local copy on your machine6.

From this point on, you’ll be able to upload files and to modify/copy/move them locally, and use Git
commands to push changes to GitHub.

Let us now see the steps to be followed, together with some explanations.

Collect phase

Upload files in raw_materials

All the collected files must be uploaded in the raw_materials folder.

If there are physical materials, folder raw_materials should contain a reference to the related Warehouse,
that may follow the Spectrum guidelines [8].

Move the source code to browsable_source

All the source code files must then be put into the browsable_source folder.
5See the documentation on https://help.github.com/en/articles/creating-a-repository-from-a-template
6See the documentation on https://help.github.com/en/articles/cloning-a-repository

SWHAP Guidelines (v. 1.0) page 13 of 34

https://www.zotero.org/google-docs/?X25TEk
https://help.github.com/en/articles/creating-a-repository-from-a-template
https://help.github.com/en/articles/cloning-a-repository

October 10, 2019

If the raw material is an archive, you should unpack it locally and then upload the result on GitHub by
performing a push7.

If the code was only available in non digital form (e.g. printed listings), you can either transcribe it
manually, or use a scanner and an OCR (optical character recognition) tool to parse it. See Appendix A
for a list of suggested tools.

Particular care should be used to ensure the files in browsable_source have the correct extension: scanner
and OCR usually generate files with a generic .txt extension, that must be changed to the extension
typically used for the programming language they contain.

Note that, at this stage, we are not interested in precise information about the versions of the software.
The purpose is to have machine-readable documents.

Finally, in preparation for the curation phase, you may want to copy the files in browsable_source to the
source folder.

Create Depository

The next step is to create the branch Depository, containing only the folders raw_materials and
browsable_source, together with the metadata updated to this point. Then, create the Depository
repository from this branch.

Curate phase

Curate the source code

Once the Depository creation is complete, you can move back to the source folder in the master branch.
Here you have to divide and number the versions, putting the files of each one in a dedicated folder and
determining who did what and when.

In practice, this means that for each version of the software you need to ascertain:

• the main contributing author,

• the exact date of the release of this particular version

This information should be consigned in a dedicated metadata file, version_history.csv, with the following
fields:

Field name description
directory name name of the directory containing the source code of this version
author name name of the main author
author email email of the main author, when available
date original original date when this version was made
curator name name of the curator person or team
curator email the reference email of the acquisition process
release tag a tag name if the directory contains a release, empty otherwise
commit message text containing a brief note from the curation team

(Re-)Create the Development History

Now we are ready to (re-)create the development history of the software. First you need to create a branch
Source Code, with the src folder.

7See the documentation on https://help.GitHub.com/en/articles/adding-a-file-to-a-repository-using-the-command-line.

SWHAP Guidelines (v. 1.0) page 14 of 34

http://www.corestandards.org/assets/Appendix_A.pdf
https://help.github.com/en/articles/adding-a-file-to-a-repository-using-the-command-line

October 10, 2019

Then, you can proceed in two ways:

• manually: using the Git commands to push the successive versions into the source folder, reading
the information collected in the file version_history.csv to set the fields for each version to the
values determined during the curation phase;

• automatically: using a tool that reads the information from version_history.csv and pro-
duces the synthetic history in a single run; one such tool has been developed, DT2SG
(https://github.com/Unipisa/DT2SG) , and you can see a running example in the next section.

The result will be a branch that materializes the development history of the software via Git commits and
releases.

Create the final repository

Finally you can create the “official” software repository, taking the versions history from the src branch
and the metadata from the master branch.

3.6) Iteration

New material may be discovered after the process has been completed, triggering an iteration of some of
the phases described above. In this case, we recommend to proceed as follows:

• if new raw material (non-source code) is found, we have to clone the Depository repository and add
new items to it. In this way, the performed commits will correctly follow the previous ones.

• if new source code is found, after we collected it in the Depository, we have the following cases:

(1) The recovered source code is related to a version which is already included in the software
history.

(2) The source code represents a completely new version, with respect to the software history
as it was previously collected.

We are not finished yet, since in both cases the SourceCode repository is no longer consistent with the
collected source code, and we have to recreate it, performing the following steps:

• Delete the SourceCode repository.

• Move back to the Workbench and according to the current case:

if (1), add the source code to the correct version.

if (2), add the new version folder with the related metadata.

• Recreate the software history as for the first iteration.

SWHAP Guidelines (v. 1.0) page 15 of 34

https://github.com/Unipisa/DT2SG

October 10, 2019

4) A walkthrough on a running example

In this section we will show the process at work on one of the first source code acquired by the SWHAP@Pisa
project, the CMM conservative garbage collector for C++ that was initially developed for project PoSSo
(Polynomial System Solver) and later became the basis for the Java GC and the Oak GC [7]. Since it has
evolved through various versions, CMM is a good workbench for SWHAPPE and an appropriate example
to show how to use the tools.

Starting the process

The acquisition process of the CMM software started informally when one of the authors, still active in
the Computer Science department, learned about the SWHAP project, and proposed to search for the
source code and make it available to the project. Shortly after, we received a mail message with all the
sources, as well as the associated research article. Since the materials were already in digital form, the
process does not involve a Warehouse.

Instantiation

Figure 4: Instantiation of the template

SWHAP Guidelines (v. 1.0) page 16 of 34

https://www.zotero.org/google-docs/?tVCOZn

October 10, 2019

We instantiate on GitHub the SWHAP repository template8 into a new repository9, that we name
“CMM-Workbench”. This action, as most of the following ones, can be performed through the user
interface (as shown in Figure 4), or programmatically through the GitHub API.

It has the same directory structure as SWHAP-Template, as shown in Figure 3.

To start working, we create a local copy on our computer, cloning this repository10. By clicking on the
green button “clone or download” (Figure 5), we get a link that we can use for this purpose in the following
command from the command line:

� �
git clone https://github.com/Unipisa/CMM−Workbench.git � �
Now, we have a local copy of the CMM-Workbench, and we can, first of all, update the README.md file
with the correct name and description of the acquisition, and synchronize it with the remote repository:

� �
git add README.md
git commit README.md −m "Updated README"
git push � �
We are now ready to start the collect phase.

Upload files in raw_materials

Here we fill the local folders with the collected material. In the case of CMM, we got a tar.gz file
containing the various versions of the software, organized according to an ad-hoc versioning system. In
the raw_materials folder we store also the paper presenting the software and the email that Giuseppe
Attardi sent us along with them, and we commit all these new contents:

� �
git add raw_materials
git commit −m "Added raw material"
git push � �
The resulting state of raw_materials is shown in Figure 6.

Unpack the source code in the browsable_source directory

In order to get a browsable version of the source code, we decompress the .tar.gz archive into the
browsable_source folder

� �
tar −xzf raw_material/cmm.tgz −C browsable_source � �
and commit the changes as done for the raw_materials folder

8https://github.com/Unipisa/SWHAP-TEMPLATE
9The repository can be either public or private according to the policy of the acquisition team.

10See Appendix B for a brief discussion on the convenience of working locally, rather than remotely via the web interface.

SWHAP Guidelines (v. 1.0) page 17 of 34

https://github.com/Unipisa/SWHAP-TEMPLATE

October 10, 2019

Figure 5: Instantiated workbench for CMM.

SWHAP Guidelines (v. 1.0) page 18 of 34

October 10, 2019

Figure 6: CMM raw materials on GitHub.

� �
git add browsable_source
git commit −m "Added browsable source"
git push � �
We can see the resulting state of the repository in Figure 7.

Finally, in preparation for the next phase, curation, we copy the files contained in browsable_source into
the source folder11.

� �
cp −r browsable_source source � �
Again, we stage changes as in the previous two steps.

� �
git add source
git commit −m "Added source"
git push � �
Create Depository

The Depository has been filled, hence we create the Depository as an orphan branch, i.e., with no references
to the parent repository, using the checkout command:

� �
git checkout −−orphan Depository � �

11Here shown with unix command line.

SWHAP Guidelines (v. 1.0) page 19 of 34

October 10, 2019

Figure 7: CMM browsable sources on GitHub.

SWHAP Guidelines (v. 1.0) page 20 of 34

October 10, 2019

As a result, we moved to the Depository branch. Here we modify the README (guidelines to fill the
README file are given in the template) and remove the source and metadata folder, since they are not
interesting for this area:

� �
git rm −rf source metadata � �
We stage the last modifications and then push to the remote repository.

� �
git add .
git commit −m "Added raw materials from master branch"
git push −−mirror origin � �
We are almost ready to move the Depository to a new repository: before that, however, we have to create
the new remote repository on GitHub (Figure 8 shows how to do this using the web interface; here too
one could use the GitHub API instead).

Figure 8: CMM-Depository creation.

SWHAP Guidelines (v. 1.0) page 21 of 34

October 10, 2019

Final depository

Finally, we can perform a push and fill the remote repository.

� �
git push https://github.com/Unipisa/CMM−Depository.git +Depository:master � �
We can check the resulting repositories via the web interface (Figure 9): CMM-Depository is now filled
with the pushed materials.

Figure 9: The CMM repositories at the end of the collect phase.

The Depository branch is then removed from the Workbench, to avoid having multiple copies that may
diverge. Should new materials became available, a new iteration of the process should start, re-initializing
the Workbench with the information in the Depository.

� �
git checkout master
git push −−delete origin Depository
git branch −D Depository � �
Curate the code

Version History In this phase, the curation team should clean up the code and organize it in separate
folders, one per version. In the case of CMM, the code is already structured this way, as shown in Figure
9, so there is nothing to do.

In order to support the (re-)creation of the development history of the original project, we prepare the
version_history.csv file with the appropriate metadata (see (Figure {#fig:cmm_vers_hist})).

Codemeta Contextually we fill the metadata/codemeta.json template file (see Figure {#fig:cmm_json},
left) with metadata according to CodeMeta guidelines obtaining what shown in (see Figure
{#fig:cmm_json}, right).

SWHAP Guidelines (v. 1.0) page 22 of 34

https://codemeta.github.io/terms/

October 10, 2019

Figure 10: The version history for CMM

SWHAP Guidelines (v. 1.0) page 23 of 34

October 10, 2019

Figure 11: CMM instantiation (right) of codemeta.json template (left)

SWHAP Guidelines (v. 1.0) page 24 of 34

October 10, 2019

License To conclude the curation phase, we have to identify licensing information.

If we find a file specyfing the licence in the source code, we have to copy its content in the metadata
/LICENCE file. Otherwise, in the case there is no licensing file in the source and we obtained license
information in other finds, we fill metadata/LICENCE according to the SPDX standard.

(Re-)Create the development History

The development history can now be (re-)created either by issuing manually (i.e. for each version directory)
the appropriate git commands, or by using a specialised tool.

Manually We have to create a clean dedicated SourceCode branch

� �
git checkout −−orphan SourceCode
git rm −r � �
Here is the template to create manually an individual commit/release:

� �
export GIT_COMMITTER_DATE="YYYY−MM−DD HH:MM:SS"
export GIT_COMMITER_NAME="Commiter Name <email@address>"
export GIT_AUTHOR_DATE="YYYY−MM−DD HH:MM:SS"
export GIT_AUTHOR_NAME="Author Name <email@address>"
git commit −m 'Commit Message Here'
git tag −a 1.9 −m "Version 1.9" � �
With DT2SG And here is an example using the DT2SG tool

� �
dotnet ./DT2SG/DT2SG_app.dll
−r SWHAP−EXAMPLE/CMM−Workbench
/source/cmm/
−m SWHAP−EXAMPLE/CMM−Workbench
metadata/version_history.csv � �

As a result we will find in our local repository a new local branch containing the rebuilt version history,
that is shown in Figure 12.

Create the final repository

We move back to the master branch using the checkout command, then remove raw_materials and source
from it:

� �
git rm −rf raw_materials browsable_source source � �
SWHAP Guidelines (v. 1.0) page 25 of 34

https://spdx.org/licenses/

October 10, 2019

Figure 12: An excerpt of the synthetic history of CMM.

SWHAP Guidelines (v. 1.0) page 26 of 34

October 10, 2019

We now create the README.md file, add it and commit changes:

� �
git add README.md
git commit −m "Final repository created" � �
Now we create the final remote repository, that we call “CMM”, see Figure 13, and we push the relevant
branches (and tags) to it.

Figure 13: The creation of the final repository.

� �
git push https://github.com/Unipisa/CMM.git +master:master +SourceCode:SourceCode
git push −−tags https://github.com/Unipisa/CMM.git +master:master +SourceCode:SourceCode � �
Figures 14, 15, 16 show the final result of CMM, their Depository and Workbench.

Publish the repositories and trigger Software Heritage acquisition

In order to publish the Depository and SourceCode repositories we have to set their visibility to “public”,
either through GitHub web interface or using the GitHub API as follows:

� �
curl −s −H 'Authorization: token '$auth_token''
−H "application/vnd.github.baptiste−preview+json"
−−data '{"private": false }'
−X PATCH https://api.github.com/repos/$org/$repository_archive � �
SWHAP Guidelines (v. 1.0) page 27 of 34

October 10, 2019

Figure 14: The final CMM repository.

SWHAP Guidelines (v. 1.0) page 28 of 34

October 10, 2019

Figure 15: The final CMM Depository.

SWHAP Guidelines (v. 1.0) page 29 of 34

October 10, 2019

Figure 16: The final CMM Workbench.

SWHAP Guidelines (v. 1.0) page 30 of 34

October 10, 2019

where $repository_archive is CMM or CMM-Depository and $auth_token is the authorizzarion
token. As a result, the code is now publicly visible at

https://github.com/Unipisa/CMM.git/

Finally, we trigger the archival of this repository in Software Heritage, using the “save code now”
functionality. This can be done using the web interface at https://save.softwareheritage.org, or by
connecting to the API on the command line as follows:

� �
curl −s −X POST https://archive.softwareheritage.org/api/1/origin/save/git/url/$repo_url � �
where $repo_url is https://github.com/Unipisa/CMM.git/ and the archived software will as

� �
[∗∗[Software Heritage archivied software]{. underline}∗∗](https://archive . softwareheritage .org/browse

/search/?q=https%3A%2F%2Fgithub.com%2FUnipisa%2F) � �
Fill the Workbench metadata

In order to preserve information about the curation process we have to fill the template files under the
Workbench metadata. Starting from some template files (see Figure {#fig:cmm-metadata}, left), we
obtain what shown in Figure {#fig:cmm-metadata}, right.

In particular we should create :

• a catalogue : metatdata/catologue.md, where each item in the raw_materials should have a record
describing its origin, the possible warehouse, their authors and collectors along with a description.
The result of tree −a on raw_materials should be included;

• a journal :metatdata/journal.md, where each collect and curate action should be annotated;
• an actors registry: metatdata/actors.md, every person taking part in the process should be registered,

with their roles, affiliations and contact information;
• a notepad : metatdata/journal.md where write possible information not covered by previous files.

5) Appendix A - Tools that can help

Here is a list of tools for code acquisition and curation that have been used during the initial experimentation
of SWHAPPE:

• Used/suggested OCR:

– Tesseract (https://github.com/tesseract-ocr/). It can be installed and used from command
line. An API is also provided to use the OCR in a script.

– OCR.space (https://ocr.space/). Online OCR and free API.

• Dedicated scripts:

SWHAP Guidelines (v. 1.0) page 31 of 34

https://github.com/Unipisa/CMM.git/
https://save.softwareheritage.org
https://github.com/tesseract-ocr/
https://ocr.space/

October 10, 2019

Figure 17: The CMM Metadata.
SWHAP Guidelines (v. 1.0) page 32 of 34

October 10, 2019

– DT2SG-Directory Tree 2 Synthetic Git (https://github.com/Unipisa/SWHAP-DT2SG). Creates
the synthetic history of the software.

– SWHAP-EXAMPLE(https://github.com/Unipisa/SWHAP-EXAMPLE)

Many other tools exist, and are currently under construction and will be loaded on the SWHAPPE
repository on GitHub.

6) Appendix B - A few tips on Github

Git is a distributed version-control system for tracking changes in source code during software development.
Here, we provide some references on Git and the GitHub platform.

For a review on GitHub key concepts, you can see the following glossary:

https://help.github.com/en/articles/github-glossary.

In order to fully exploit Github, you should install Git on your pc:

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git.

This will allow you to use Git from command line. Even if it can be less intuitive, it’s more powerful than
working with the web interface: for instance, you can upload folders and files of any size, without the
limitations of the latter. Furthermore, using Git commands allows for instantiating the process on any Git
supported platform. For a review of the commands, please check the manual: https://git-scm.com/docs.

As an alternative, if you’re using a Mac or Windows, you can download Github Desktop, which provides a
comfortable GUI: https://desktop.github.com/.

For more information about the commit mechanism and how to see the log of changes, please see the
following link: https://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History.

To implement the process and separate areas, we chose to create two different branches (Depository and
SourceCode) and get the corresponding repositories from them. Each branch has an independent commit
history, thus the history of Depository and SourceCode is kept clean and easy to consult. Here is a
discussion on how to see the branch history: https://stackoverflow.com/questions/16974204/how-to-get-
commit-history-for-just-one-branch.

Bibliography

[1] Harold Abelson and Gerald J. Sussman with Julie Sussman. Structure and Interpretation of Computer
Programs. Cambridge, MA: The MIT Press and McGraw-Hill, 1985, pp. xx + 542. isbn: 0-262-01077-1
(MIT Press), 0-07-000422-6 (McGraw-Hill).

[2] Jean-François Abramatic, Roberto Di Cosmo, and Stefano Zacchiroli. “Building the Universal
Archive of Source Code”. In: Commun. ACM 61.10 (Sept. 2018), pp. 29–31. issn: 0001-0782. doi:
10.1145/3183558. url: http://doi.acm.org/10.1145/3183558.

SWHAP Guidelines (v. 1.0) page 33 of 34

https://github.com/Unipisa/SWHAP-DT2SG
https://github.com/Unipisa/SWHAP-EXAMPLE
https://help.github.com/en/articles/github-glossary
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/docs
https://desktop.github.com/
https://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History
https://stackoverflow.com/questions/16974204/how-to-get-commit-history-for-just-one-branch
https://stackoverflow.com/questions/16974204/how-to-get-commit-history-for-just-one-branch
https://doi.org/10.1145/3183558
http://doi.acm.org/10.1145/3183558

October 10, 2019

[3] Giuseppe Attardi and Tito Flagella. “Memory Management in the PoSSo Solver”. In: J. Symb. Comput.
21.3 (1996), pp. 293–311. doi: 10.1006/jsco.1996.0013. url: https://doi.org/10.1006/jsco.1996.0013.

[4] Ronald Burkey. Virtual AGC - Changelog. Available at http://ibiblio.org/apollo/changes.html. Spans
years 2003 to 2019.

[5] Expert Group Report. Paris Call: Software Source Code as Heritage for Sustainable Development.
Available from https://unesdoc.unesco.org/ark:/48223/pf0000366715. 2019.

[6] Leonard J. Shustek. “What Should We Collect to Preserve the History of Software?” In: IEEE
Annals of the History of Computing 28.4 (2006), pp. 110–112. doi: 10.1109/MAHC.2006.78. url:
http://dx.doi.org/10.1109/MAHC.2006.78.

[7] Diomidis Spinellis. “A repository of Unix history and evolution”. In: Empirical Software Engineering
22.3 (2017), pp. 1372–1404. doi: 10.1007/s10664-016-9445-5. url: https://doi.org/10.1007/s10664-
016-9445-5.

SWHAP Guidelines (v. 1.0) page 34 of 34

https://doi.org/10.1006/jsco.1996.0013
https://doi.org/10.1006/jsco.1996.0013
http://ibiblio.org/apollo/changes.html
https://doi.org/10.1109/MAHC.2006.78
http://dx.doi.org/10.1109/MAHC.2006.78
https://doi.org/10.1007/s10664-016-9445-5
https://doi.org/10.1007/s10664-016-9445-5
https://doi.org/10.1007/s10664-016-9445-5

	Introduction
	The process, abstract view
	Phases
	Collect
	Curate
	Archive
	Present

	An iterative process
	Resources needed by the process
	Warehouse
	Depository
	Workbench
	Curated source code deposit
	Catalogues and journals

	Roles in the process
	Collector
	Deposit engineer
	Curator
	Archive engineer
	Presentation designer and Web engineer

	Implementation requirements
	Long term availability
	Historical accuracy
	Traceability
	Openness
	Interoperability

	The process, a concrete view
	General Motivation for using Git and GitHub
	SWHAP - GitHub correspondence
	Process overview
	The SWHAP template
	The process, step by step
	Instantiation
	Collect phase
	Curate phase

	Iteration

	A walkthrough on a running example
	Starting the process
	Instantiation
	Upload files in raw_materials
	Unpack the source code in the browsable_source directory
	Create Depository
	Final depository
	Curate the code
	(Re-)Create the development History
	Create the final repository
	Publish the repositories and trigger Software Heritage acquisition
	Fill the Workbench metadata

	Appendix A - Tools that can help
	Appendix B - A few tips on Github

