
18/06/20 1rd-alliance.org @resdatall | @rda_europe | @RDA_US

Day & Topic Sessions

Monday, 15th June 2020 - Data Management Planning 14:00 UTC + 23:00 UTC

Tuesday, 16th June 2020 - Data Description 06:00 UTC + 14:00 UTC

Wednesday, 17th June 2020 - Identify, Store and Preserve 07:00 UTC + 14:00 UTC

Thursday, 18th June 2020 - Disseminate, Link and Find 07:00 UTC + 12:00 UTC

Friday, 19th June 2020 - Policy, Legal Compliance and Capacity 05:00 UTC + 13:00 UTC

18/06/20 2rd-alliance.org @resdatall | @rda_europe | @RDA_US

➔ The RDA Global Adoption Week: 15-19 June 2020
➔ focused on five areas of the research data lifecycle

Originally planned for the RDA 15th
Plenary, the Adoption Week aims to
demonstrate the wide variety of
RDA adoptable and adopted
solutions to data sharing challenges
across research practices, domains
and geographies.

18/06/20 3rd-alliance.org @resdatall | @rda_europe | @RDA_US

Purpose of the week:

• Learn about RDA Outputs

• Converse with speakers from
all around the world who
have created and
implemented them

• Determine how best to
integrate those data sharing
solutions into your own
projects

Recommendations and outputs catalogue

18/06/20 4rd-alliance.org @resdatall | @rda_europe | @RDA_US

• RDA Outputs are classified as
RDA Recommendations
(official, endorsed results of
RDA Groups), Supporting
Outputs (useful solutions from
our RDA Working and Interest
Groups) or other Outputs

• They can be searched
according to their status,
Data Life Cycle topics or
scientific domain

rd-alliance.org/recommendations-and-outputs/catalogue

Tell your adoption story

5

• Are you an adopter? RDA is
actively seeking new adoption
stories to inspire the further
uptake of RDA outputs.

• Submit your story here:
https://www.rd-alliance.org/t
ell-your-rda-adoption-story

rd-alliance.org @resdatall | @rda_europe | @RDA_US18/06/20

https://www.rd-alliance.org/tell-your-rda-adoption-story
https://www.rd-alliance.org/tell-your-rda-adoption-story

CODATA Data Science Journal CfP

6

• RDA special collection themes:
o Results produced by an IG or WG;
o Description of an Adoption Case outlining

how a specific recommendation or output
has been implemented;

o Other types of work related to RDA
activities.

• RDA Europe 4.0 still has funds available
for the publication of articles in DSJ

• Open to all interested applicants
regardless of their geographical
provenance.

• Deadline 17 July

rd-alliance.org @resdatall | @rda_europe | @RDA_US18/06/20

Thursday 18th June
07:00 UTC

1. Data Discovery Paradigms IG
• Survey on the practices in data search services

Mingfang Wu (ARDC)
• Eleven quick tips and User requirements and recommendations

Fotis Psomopoulos (INAB CERTH)
 Followed by Q&A

2.FAIR data maturity model: specification and guidelines

Keith Russell (ARDC)
 Followed by Q&A

3. Workflows for Research Data Publishing: Models and Key Components
Recommendation - Introducing Maneage: customizable framework for
managing data lineage

Mohammad Akhlaghi (IAC)
 Followed by Q&A

Data Discovery Paradigms IG
Relevancy Ranking Task Force

RDA Global Adoption week
18 June 2020

9

Zenodo

DataCite

Research
data

Australia

data.gov
earthdata.nasa

.gov

Dryad
World Wide

Science

Crawling/
Aggregating Parsing Indexing Matching Ranking

Query correction, recommendation
Snippet
generation

System view

10

▪ Investigate what data search systems and ranking models
have been deployed.

▪ Serve as a benchmark to be looked back on in future to
assess how much and in what ways data search has
improved.

▪ Identify potential collaborative projects from the Survey

Survey goals

11

1. What are characteristics of each repositories? (5)
2. What are system configurations (e.g., ranking model, index

methods, query methods)? (7)
3. What are evaluation methods and benchmark? (10)
4. What methods have been used to boost search-ability to web

search engines? (2)
5. What other technologies or system configurations have been

employed? (5)
6. Wish list for future activities for the RDA relevance task force (2)

Survey Design (33 Questions)

12Participants background

13

Survey result highlights ...

14Data repositories use common search systems

N = 96 N = 90

15Open source and available skills are top reasons
for choosing a search system

N = 96

16Majority didn’t conduct any kind of evaluations

9 Created test collection
11 Informal evaluation
 6 Log analysis

No performance measure was provided

17

▪ Repositories desire guidelines for improving relevancy ranking in their
data search system, with small repositories having the greatest need.

▪ Repositories understand that their search systems need to be evaluated
and improved, but often lack the resources (time and/or expertise) to
explore and evaluate the available options.

▪ The study concludes that there is an opportunity for people working in the
search space to collaborate, to build test collections and other efforts that
offer the greatest improvements in search services at the lowest cost.

Summary

Khalsa, SiriJodha; Cotroneo, Peter; Wu, Mingfang (2018), “A
survey of current practices in data search services”, Mendeley
Data, v1 http://dx.doi.org/10.17632/7j43z6n22z.1

18

Contact:
mingfang.wu@ardc.edu.au
sjsk@nsidc.org
fpsom@certh.gr

Thank you

mailto:mingfang.wu@ardc.edu.au
mailto:sjsk@nsidc.org
mailto:fpsom@certh.gr

Data Discovery Paradigms Interest Group

RDA Global Adoption week
18 June 2020

20

Helping to make research data Findable to support users in discovering data.

DDP Interest Group: Motivation

Data catalogue
(Metadata)

Data
discovery
service

Data users

21

■ Provide a forum where representatives across the spectrum of
stakeholders and roles can explore how to improve data discovery.

■ Produce actionable recommendations for data producers, data
repositories, data services providers and data seekers.

DDP Interest Group: Objective

22

Tip 1: Think about the data you need and why you need them.
Tip 2: Select the most appropriate resource.
Tip 3: Construct your query strategically.
Tip 4: Make the repository work for you.
Tip 5: Refine your search.
Tip 6: Assess data relevance and fitness-for-use.
Tip 7: Save your search and data- source details.
Tip 8: Look for data services, not just data.
Tip 9: Monitor the latest data.
Tip 10: Treat sensitive data responsibly.
Tip 11: Give back (cite and share data).

Output I - Eleven quick tips for finding research data

Gregory K, Khalsa SJ, Michener WK, Psomopoulos FE, de Waard A, Wu M (2018) Eleven quick tips for
finding research data. PLoS Comput Biol 14(4): e1006038. https://doi.org/10.1371/journal.pcbi.1006038

(8124 views, 2345 downloads)

Best practices for data seeker

Can be used for learning and
research skills training

https://doi.org/10.1371/journal.pcbi.1006038

23

Output 2 - User Requirements for a data repository

Nine requirements (from 79 use cases)
● Indication of data availability
● Connection of data with

person/institution/paper/citations/grants
● Fully annotated data
● Filtering of data based on specific criteria on

multiple fields at the same time
● Cross-referencing of data
● Visual analytics/inspections of

data/thumbnail preview
● Sharing data in a collaborative environment
● Accompanying educational/training material
● Portal functionality similar to other

established academic portals

Data repository operators can use the
requirements for the following purposes:
● As a checklist for designing and

implementing a data service portal.
● For existing data discovery services, the

list of requirements can be used as
guidelines for heuristic evaluation of a
specific data discovery service, and
therefore plan for future improvements
when necessary.

● In the era of big data, research on data
discovery paradigms is at an all-time
high. A user’s perspective provides a
strong foundation on which to construct
the paradigms of the future.

24

Output 2 - Recommendations for Data Repositories to make
data discovery

Data repositories can take the ten
recommendations:

● As guidelines when implementing
a new repository

● As a checklist when conducting
heuristic evaluation of an existing
repository.

Data repositories can implement all or
prioritise their implementation based on
their user needs and available
resources.

Recommendations:
● Multiple query interfaces
● Multiple access points
● Assessable search result
● Readable and analysable metadata

records
● Available bibliographic references
● Available data usage statistics
● Consistent interface
● Identifiable duplicats
● Findable from web search engines
● Interoperability with other

repositories Use cases published to Zenodo
https://doi.org/10.5281/zenodo.1050976 (124
views, 73 downloads)

https://doi.org/10.5281/zenodo.1050976

25

Output 2 - User Requirements and Recommendations for Data
Repositories

Wu, M., Psomopoulos, F., Khalsa, S.J.
and de Waard, A., 2019. Data Discovery
Paradigms: User Requirements and
Recommendations for Data Repositories.
Data Science Journal, 18(1), DOI:
http://doi.org/10.5334/dsj-2019-003
(1432 views, 396 downloads

http://doi.org/10.5334/dsj-2019-003

26

fpsom@certh.gr
mingfang.wu@ardc.edu.au
sjsk@nsidc.org

Thanks ...

Contact

https://www.rd-alliance.org/groups/data-discovery-paradigms-ig

mailto:fpsom@certh.gr
mailto:mingfang.wu@ardc.edu.au
mailto:sjsk@nsidc.org
https://www.rd-alliance.org/groups/data-discovery-paradigms-ig
https://www.rd-alliance.org/groups/data-discovery-paradigms-ig

CC BY-SA 4.0

Adoption of the
FAIR Data Maturity Model

18 June 2020

www.rd-alliance.org - @resdatall 2716/06/2020

CC BY-SA 4.0
www.rd-alliance.org - @resdatall 28

FAIR
The principles are NOT strict

• Ambiguity
• Wide range of interpretations of FAIRness

Different FAIR Assessment Frameworks

• Different metrics
• No comparison of results
• No benchmark

Context

SOLUTION is to bring together stakeholders to build on existing approaches and expertise

• Set of core assessment criteria for FAIRness
• FAIR data maturity model & toolset
• FAIR data checklist
• RDA recommendation

Join the RDA Working Group: RDA WG web page | GitHub

16/06/2020

https://www.rd-alliance.org/groups/fair-data-maturity-model-wg
https://github.com/RDA-FAIR/FAIR-data-maturity-model-WG

CC BY-SA 4.0
www.rd-alliance.org - @resdatall 29

Public review period complete now to council

16/06/2020

https://www.rd-alliance.org/group/fair-data-maturity-model-wg/outcomes/fair-data-maturity-model-specification-and-guidelines

THANKS TO ALL REVIEWERS

3600+ page views

14 comments

https://www.rd-alliance.org/group/fair-data-maturity-model-wg/outcomes/fair-data-maturity-model-specification-and-guidelines

CC BY-SA 4.0
16/06/2020 www.rd-alliance.org - @resdatall 30

Adoption examples

CC BY-SA 4.0
www.rd-alliance.org - @resdatall 31

Early adopters – Experience sharing

16/06/2020

• Ge Peng | NOAA
• Anusuriya Devaraju | FAIRsFAIR

… will share their relevant experience with regard to the
adoption of the FDMM and answer to the following questions;

1. What is the level of adoption at your organisation? (E.g., pilot,
production, ...)

2. Do you plan to continue to use the Recommendation?
3. Did you need to modify the Recommendation for your use?
4. Can you give an estimate of how much time / effort you have spent on

the adoption so far?
5. What’s your overall experience? (E.g., Very Good, Good, Fair, Poor)
6. Would you do it again?

CC BY-SA 4.0

Evaluating the FAIRness of Environmental Data
– Application of the RDA FAIR Data Maturity Indicators

Ge Peng, PhD
Cooperative Institute for Satellite Earth System Studies (CISESS) Between

U.S. National Oceanic and Atmospheric Administration (NOAA) and North Carolina State University
at NOAA National Centers for Environmental Information (NCEI)

#9 Workshop of the RDA FAIR Data Maturity Model Working Group, May 20–21, 2020

www.rd-alliance.org - @resdatall 32

CC BY-SA 4.0
2019-05-20 www.rd-alliance.org - @resdatall 33

Purposes of Pilot Application

▪ Examine the relevancy of the RDA FAIR DMIs (v0.04)

▪ Baseline the FAIRness of NCEI managed data
o In particular, OneStop-Ready datasets,

 OneStop project was Initiated in 2015 to improve discovery and access services for NOAA datasets.

o What worked?

▪ Identify potential gaps & define path forward in NCEI data sharing practices

CC BY-SA 4.0
2019-05-20 www.rd-alliance.org - @resdatall 34

Adopting OAIS RM & DSMM Helped!

Many data stewardship quality attributes are not
explicitly addressed by the FAIR Data Principles.

▪ Most of data are open by default,
▪ Use agreements or use constraints,
▪ CC license not yet explicitly included.

CC BY-SA 4.0
2019-05-20 www.rd-alliance.org - @resdatall 35

Path Forward

Integrating Assessment Results - Fairly
▪ Community guidelines – consistently curating and representing dataset quality information,
▪ Virtual workshop on July 13, 2020 – bringing together international domain experts,
▪ Contact me at gpeng@ncsu.edu if interested in participating or contributing.

▪ Explicitly include a data usage license, e.g. CC-BY 4.0;
CC0, in the metadata record:

o Discussions are on-going,
o Procedure is under development.

▪ Assess: 200+ additional NCEI datasets,

o produced by NCEI’s Center for Weather and Climate, various
stages of OneStop-ready.

▪ Examine the scalability of the evaluation.

Extending the Application Scope
– under discussion

Improving the FAIRness of
NCEI & NOAA Data

mailto:gpeng@ncsu.edu

RDA FAIR Data Maturity Model Adoption
(Impression and Experience)

Anusuriya Devaraju & Hervé L'Hours
(on behalf of FAIRsFAIR)

Repository Certification

2020-04-2237

• CoreTrustSeal follows a self-assessment and peer review model

• FAIRsFAIR is offering support with a CoreTrustSeal+FAIR angle

• Map object characteristics to where repositories can enable FAIR

Repository Certification

2020-04-2238

• CoreTrustSeal follows a self-assessment and peer review model

• FAIRsFAIR is offering support with a CoreTrustSeal+FAIR angle

• Map object characteristics to where repositories can enable FAIR

Later:

• Integrate object evaluation outcomes

39

40

Overall Adoption Experience

2020-04-2241

• The recommendation should be used as a starting reference point for data FAIRness
assessment.

• Presentation - specification and guidelines are well structured!

• ‘What’ aspect of FAIR assessment
• Descriptions of indicators are very helpful!

• Suggestion - Include priority level next to each of the indicators.

• Essential I-indicators missing (needs further work or not important?)

• ‘How’ aspect of FAIR assessment
• Context matters (e.g., practices, data types)

• Assessment details not always provide sufficient detail to implement tests.

• Potential supporting technologies and services should be described.

CC BY-SA 4.0

Next steps

• Reach out to your communities as for the publishing of the FAIR data maturity model:
specification and guidelines (i.e. RDA recommendation)

• Continuously provide feedback to the Editorial Team and pass on information with regards
to the use of the FAIR data maturity model: specification and guidelines (i.e. RDA
recommendation)

The editorial team will look into a release calendar and change management schedule

www.rd-alliance.org - @resdatall 42

Possibly September 2020

WORKSHOP #10

16/06/2020

CC BY-SA 4.0
16/06/2020 www.rd-alliance.org - @resdatall 43

Thank you!

Introducing Maneage:
Customizable framework for managing data lineage

[RDA Europe Adoption grant recipient. Submitted to IEEE CiSE (arXiv:2006.03018), Comments welcome]

Mohammad Akhlaghi
Instituto de Astrof́ısica de Canarias (IAC), Tenerife, Spain

RDA Global Adoption week
June 18th, 2020

Most recent slides available in link below (this PDF is built from Git commit d1faba6):

https://maneage.org/pdf/slides-intro-short.pdf

https://www.computer.org/csdl/magazine/cs
https://arxiv.org/abs/2006.03018
https://akhlaghi.org
https://www.rd-alliance.org/rda-global-adoption-week-15-19-june-2020
http://git.maneage.org/slides-intro.git
https://maneage.org/pdf/slides-intro-short.pdf

Challenges of the RDA-WDS Publishing Data Workflows WG (DOI:10.1007/s00799-016-0178-2)

Challenges (also relevant to researchers, not just repositories)

◮ Bi-directional linking: how to link data and publications.

◮ Software management: how to manage, preserve, publish and cite software?

◮ Metrics: how often are data used.

◮ Incentives to researchers: how to communicate benefits of following good practices to researchers.

“We would like to see a workflow that results in all scholarly objects being connected, linked, citable,
and persistent to allow researchers to navigate smoothly and to enable reproducible research. This
includes linkages between documentation, code, data, and journal articles in an integrated
environment. Furthermore, in the ideal workflow, all of these objects need to be well documented to
enable other researchers (or citizen scientists etc) to reuse the data for new discoveries.”

https://doi.org/10.1007/s00799-016-0178-2

General outline of a project (after data collection)

Existing solutions:

Virtual machines

Containers (e.g., Docker)

OSs (e.g., Nix, GNU Guix)

Software Build

Hardware/data

Run software on data Paper

https://heywhatwhatdidyousay.wordpress.com
http://pngimages.net

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Environment update?

In sync with coauthors?

Sync with analysis?

Report this info?

Cited software?

History recorded?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

https://heywhatwhatdidyousay.wordpress.com
http://pngimages.net

Science is a tricky business

Image from nature.com (“Five ways to fix statistics”, Nov 2017)

Data analysis [...] is a human behavior. Researchers who hunt hard enough will turn up a result that fits
statistical criteria, but their discovery will probably be a false positive.

Five ways to fix statistics, Nature, 551, Nov 2017.

https://www.nature.com/articles/d41586-017-07522-z

Founding criteria

Basic/simple principle:

Science is defined by its METHOD, not its result.

◮ Complete/self-contained:
◮ Only dependency should be POSIX tools (discards Conda or Jupyter which need Python).
◮ Must not require root permissions (discards tools like Docker or Nix/Guix).
◮ Should be non-interactive or runnable in batch (user interaction is an incompleteness).
◮ Should be usable without internet connection.

◮ Modularity: Parts of the project should be re-usable in other projects.
◮ Plain text: Project’s source should be in plain-text (binary formats need special software)

◮ This includes high-level analysis.
◮ It is easily publishable (very low volume of ×100KB), archivable, and parse-able.
◮ Version control (e.g., with Git) can track project’s history.

◮ Minimal complexity: Occum’s rasor: “Never posit pluralities without necessity”.
◮ Avoiding the fashionable tool of the day: tomorrow another tool will take its place!
◮ Easier learning curve, also doesn’t create a generational gap.
◮ Is compatible and extensible.

◮ Verifable inputs and outputs: Inputs and Outputs must be automatically verified.

◮ Free and open source software: Free software is essential: non-free software is not configurable,
not distributable, and dependent on non-free provider (which may discontinue it in N years).

General outline of a project (after data collection)

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Environment update?

In sync with coauthors?

Sync with analysis?

Report this info?

Cited software?

History recorded?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

Predefined/exact software tools

Reproducibility & software

Reproducing the environment (specific software versions, build instructions and dependen-
cies) is also critically important for reproducibility.

◮ Containers or Virtual Machines are a binary black box.

◮ Maneage installs fixed versions of all necessary research software and their
dependencies.

◮ Installs similar environment on GNU/Linux, or macOS systems.

◮ Works very much like a package manager (e.g., apt or brew).

Example: Matplotlib (a Python visualization library) build dependencies

From “Attributing and Referencing (Research) Software: Best Practices and Outlook from Inria” (Alliez et al. 2020, CiSE, DOI:10.1109/MCSE.2019.2949413).

https://doi.org/10.1109/MCSE.2019.2949413

Advantages of this build system

◮ Project runs in fixed/controlled environment: custom build of Bash, Make,
GNU Coreutils (ls, cp, mkdir and etc), AWK, or SED, LATEX, etc.

◮ No need for root/administrator permissions (on servers or super computers).

◮ Whole system is built automatically on any Unix-like operating system
(less 2 hours).

◮ Dependencies of different projects will not conflict.

◮ Everything in plain text (human & computer readable/archivable).

https://natemowry2.wordpress.com

https://natemowry2.wordpress.com

Software citation automatically generated in paper (including Astropy)

General outline of a project (after data collection)

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Environment update?

In sync with coauthors?

Sync with analysis?

Report this info?

Cited software?

History recorded?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

Input data source and integrity is documented and checked

Stored information about each input file:

◮ PID (where available).

◮ Download URL.

◮ MD5-sum to check integrity.

All inputs are downloaded from the given PID/URL when necessary
(during the analysis).

MD5-sums are checked to make sure the download was done properly or the file
is the same (hasn’t changed on the server/source).

Example from the reproducible paper arXiv:1909.11230.
This paper needs three input files (two images, one catalog).

https://arxiv.org/abs/1909.11230

General outline of a project (after data collection)

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Environment update?

In sync with coauthors?

Sync with analysis?

Report this info?

Cited software?

History recorded?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

Reproducible science: Maneage is managed through a Makefile

All steps (downloading and analysis) are managed by Makefiles
(example from zenodo.1164774):

◮ Unlike a script which always starts from the top, a Makefile starts from the
end and steps that don’t change will be left untouched (not remade).

◮ A single rule can manage any number of files.

◮ Make can identify independent steps internally and do them in parallel.

◮ Make was designed for complex projects with thousands of files (all major
Unix-like components), so it is highly evolved and efficient.

◮ Make is a very simple and small language, thus easy to learn with great
and free documentation (for example GNU Make’s manual).

https://doi.org/10.5281/zenodo.1164774
https://www.gnu.org/software/make/manual/

General outline of a project (after data collection)

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Environment update?

In sync with coauthors?

Sync with analysis?

Report this info?

Cited software?

History recorded?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

Values in final report/paper

All analysis results (numbers, plots, tables) written in paper’s PDF as LATEX macros. They are thus
updated automatically on any change.
Shown here is a portion of the NoiseChisel paper and its LATEX source (arXiv:1505.01664).

https://arxiv.org/abs/1505.01664

Analysis step results/values concatenated into a single file.

All LATEX macros come from a single file.

Analysis results stored as LATEX macros

The analysis scripts write/update the LATEX macro values automatically.

Let’s look at the data lineage to replicate Figure 1C (green/tool) of Menke+2020
(DOI:10.1101/2020.01.15.908111), as done in arXiv:2006.03018 for a demo.

ORIGINAL PLOT
The Green plot shows the fraction of papers mentioning
software tools from 1997 to 2019.

OUR enhanced REPLICATION
The green line is same as above but over
their full historical range.
Red histogram is the number of papers
studied in each year

10
1

10
2

10
3

10
4

10
5

N
u
m

.
p
ap

er
s

(l
o
g
-s

ca
le

)

1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
0%

20%

40%

60%

80%

100%

Year

F
ra

c.
p
ap

er
s

w
it

h
to

o
ls

https://doi.org/10.1101/2020.01.15.908111
https://arxiv.org/abs/2006.03018

All analysis steps cascade down to paper.pdf (URL and checksum of input in INPUTS.conf).

top-make.mk

initialize.mk download.mk format.mk demo-plot.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.texverify.tex

initialize.tex

Basic project info

(e.g., Git commit).

Also defines

project structure

(for *.mk files).

demo-plot.tex

tools-per-

year.txt

table-3.txt

menke20.xlsx

INPUTS.conf

download.tex format.tex

demo-year.conf

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

It is very easy to expand the project and add new analysis steps (this solution is scalable)

top-make.mk

initialize.mk download.mk format.mk demo-plot.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.texverify.tex

initialize.tex

Basic project info

(e.g., Git commit).

Also defines

project structure

(for *.mk files).

demo-plot.tex

tools-per-

year.txt

table-3.txt

menke20.xlsx

INPUTS.conf

download.tex format.tex

demo-year.conf

next-step.mk

next-step.tex

out-a.dat

out-b.dat

demo-out.dat

param.conf

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

All questions have an answer now (in plain text: human & computer readable/archivable).

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Environment update?

In sync with coauthors?

Sync with analysis?

Report this info?

Cited software?

History recorded?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

All questions have an answer now (in plain text: so we can use Git to keep its history).

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Environment update?

In sync with coauthors?

Sync with analysis?

Report this info?

Cited software?

History recorded?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

New projects branch from Maneage

Maneage

ad2c476

706c644

fa2ac10

1e06fe2

32043ee

2d808f2

a4d96c0

Project

53b53d6

9f8cc74

8ebb784

01ce2cc

b52cc6f

b52
cc6

f

◮ Template’s history is recorded in Git.

◮ New project: a branch from the template.
Recall that every commit contains the following:
◮ Instructions to download, verify and build software.
◮ Instructions to download and verify input data.
◮ Instructions to run software on data (do the analysis).
◮ Narrative description of project’s purpose/context.

◮ Research progresses in the project branch.

◮ Template will evolve (improved infrastructure).

◮ Template can be imported/merged back into project.

◮ The template and project will evolve.

◮ During research this encourages creative tests
(previous research states can easily be retrieved).

◮ Coauthors can work on same project in parallel
(separate project branches).

◮ Upon publication, the Git checksum is enough to
verify the integrity of the result.

“Verified” image from vectorstock.com

https://www.vectorstock.com/royalty-free-vector/red-vintage-verified-stamp-retro-style-on-white-vector-22770076

Two recent examples (publishing Git checksum in abstract)

Publication of the project

A reproducible project using Maneage will have the following (plain text) components:

◮ Makefiles.

◮ LATEX source files.

◮ Configuration files for software used in analysis.

◮ Scripts/programming files (e.g., Python, Shell, AWK, C).

The volume of the project’s source will thus be negligible compared to a single figure in a paper
(usually ∼ 100 kilo-bytes).

The project’s pipeline (customized Maneage) can be published in

◮ arXiv: uploaded with the LATEX source to always stay with the paper
(for example arXiv:1505.01664 or arXiv:2006.03018).

◮ Zenodo: Along with all the input datasets (many Gigabytes) and software
(for example zenodo.3872248) and given a unique DOI.

https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/2006.03018
https://doi.org/10.5281/zenodo.3872248

General outline of using Maneage (for example arXiv:2006.03018)

✩ git clone https://gitlab.com/makhlaghi/maneage-paper # Import the project.

✩ ./project configure # You will specify the build directory on your system,

and it will build all software (about 1.5 hours).

✩ ./project make # Does all the analysis and makes final PDF.

https://arxiv.org/abs/2006.03018

Future prospects...

Adoption of reproducibility by many researchers will enable the following:

◮ A repository for education/training (PhD students, or researchers in other fields).

◮ Easy verification/understanding of other research projects (when necessary).

◮ Trivially test different steps of others’ work (different configurations, software and etc).

◮ Science can progress incrementally (shorter papers actually building on each other!).

◮ Extract meta-data after the publication of a dataset (for future ontologies or vocabularies).

◮ Applying machine learning on reproducible research projects will allow us to solve some Big
Data Challenges:

◮ Extract the relevant parameters automatically.

◮ Translate the science to enormous samples.

◮ Believe the results when no one will have time to reproduce.

◮ Have confidence in results derived using machine learning or AI.

Summary:
Maneage and its principles are described in arXiv:2006.03018. It is a customizable template that will
do the following steps/instructions (all in simple plain text files).

◮ Automatically downloads the necessary software and data.

◮ Builds the software in a closed environment.

◮ Runs the software on data to generate the final research results.

◮ Modification of part of the analysis will only result in re-doing that part, not the whole project.

◮ Using LaTeX macros, paper’s figures, tables and numbers will be Automatically updated after a
change in analysis. Allowing the scientist to focus on the scientific interpretation.

◮ The whole project is under version control (Git) to allow easy reversion to a previous state. This
encourages tests/experimentation in the analysis.

◮ The Git commit hash of the project source, is printed in the published paper and saved on output
data products. Ensuring the integrity/reproducibility of the result.

◮ These slides are available at https://maneage.org/pdf/slides-intro-short.pdf.

◮ Longer slides are available at https://maneage.org/pdf/slides-intro.pdf.

For a technical description of Maneage’s implementation, as well as a checklist to customize it, and
tips on good practices, please see this page:
https://gitlab.com/maneage/project/-/blob/maneage/README-hacking.md

https://arxiv.org/abs/2006.03018
https://maneage.org/pdf/slides-intro-short.pdf
https://maneage.org/pdf/slides-intro.pdf
https://gitlab.com/maneage/project/-/blob/maneage/README-hacking.md

