RDA and Community -Expectations (FAIR, TRUST, ...)
Use of RDA Outputs as Specifications: Repository

Wim Hugo, CTO, DANS
Positive Outcomes - RDA

1. Global Expert **Consensus** and **Validation**
2. Documenting and Collating **Community Expectations**
3. **Solidifying** Recommendations, Best Practices, Guidance
4. Organically/ Genetically **Emerging Architecture**
5. Agreeing **Design Patterns** and **Standards**
Positive Outcomes - RDA

1. Global Expert **Consensus** and **Validation**
 a. **Compliance** - TRUST

2. Documenting and Collating **Community Expectations**
 a. TRUST and **CoreTrustSeal** Criteria
 b. **FAIR** Maturity
 c. **CARE**

3. **Solidifying** Recommendations, Best Practices, Guidance
 a. **Metadata Crosswalks and Registries**

4. Organically/ Genetically **Emerging Architecture**
 a. Research Data **Repository Interoperability**

5. Agreeing **Design Patterns** and **Standards**
 a. Foundational and Common **Data Query Vocabulary**
Community Expectations

This is a significant aspect of repository infrastructure roadmaps and technology planning: without some consensus on current and future requirements, it is nearly impossible to align our technology planning with the direction community expectations. We regard summaries such as TRUST, FAIR, and CARE as prime examples of such community expectations.
DANS Collects Inputs, Including Community Expectations, Into Formal Versioned Requirements Statements

Systems Engineering

CTS Certification Compliance

<table>
<thead>
<tr>
<th>Summary</th>
<th>DANS requires policies, contractual arrangements, procedures, support documentation, and system capabilities to enable certification as a trustworthy repository.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audience</td>
<td></td>
</tr>
<tr>
<td>Status</td>
<td>Draft</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Authors</th>
<th>Description</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-11-2021</td>
<td>W Hugo</td>
<td>Inception</td>
<td>0.1</td>
</tr>
<tr>
<td>12-11-2021</td>
<td>W Hugo</td>
<td>Elaboration</td>
<td>0.2</td>
</tr>
</tbody>
</table>
The Inputs Have Generic Implications

- Strategic/Management/Policy
- Contractual
- Procedural
- Support Documentation
- Use Cases
- Architecture and Specifications
- Roles and Responsibilities

B. Strategic, Management, and Communication Impacts

<table>
<thead>
<tr>
<th>#</th>
<th>Element</th>
<th>Description</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.2.3</td>
<td>G.1.2.A.2.3.01</td>
<td>Criterion</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>G.1.2.A.2.3.02</td>
<td>List</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>G.1.2.A.2.3.03</td>
<td>Selection</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>G.1.2.A.2.3.04</td>
<td>Rights</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>G.1.2.B.01</td>
<td>Product and Service</td>
<td>1.2.2.1.01</td>
</tr>
<tr>
<td></td>
<td>G.1.2.G.1.01</td>
<td>Workflow</td>
<td>1.2.2.1.04</td>
</tr>
</tbody>
</table>
But …

“If you don’t know where you are going any road can take you there”

— Lewis Carroll, Alice in Wonderland

RDA is large enough to allow any number of directions to co-exist, moderated by the TAB.

This is both a positive and negative characteristic:

- Allows ‘genetic’ movement towards more ideal solutions
- Costly and confusing, possibly divergent

RDA is too large for any individual or even institution to cover and distill successfully

No change to RDA, but **collective action** as opposed to **individual action**.
Future Architecture:
A Loosely Coupled Ecosystem
Some Advantages of a Local RDA Collaboration

1. National Agreement on Architecture Options and Open Questions
2. Improved Coverage and Translation
3. Coordinated Participation in EOSC (e.g. Task Forces)
4. Co-Development of Use Cases, Specifications
5. Co-Development of Running Code and Reference Implementations
Discussion

RDA Recommendations

- Current Involvement and Experience
- Thoughts on Coordinated NL Participation
- Any other ideas or perspectives