
1

RDA Data Foundation and Terminology
DFT 1: Overview

Contributors: Stan Ahalt, Gary Berg-Cross, Jan Brase, Daan Broeder, Yin Chen, Antoine Isaac, Bob
Kahn, Larry Lannom, Michael Lautenschlager, Reagan Moore, Alberto Michelini, Hans Pfeifenberger,
Raphael Ritz, Ulrich Schwardmann, Herbert van de Sompel, Dieter van Uytvanck, Dave Vieglas, Peter
Wittenburg, Yunqiang ZHU, Herman Stehouwer.

Technical Editors: Peter Wittenburg, Gary Berg-Cross
Copy Editor Karen Green (UNC)
December 2014

Version 1.6

The general outline of documents from DFT WG is as follows:

 DFT 1: Overview

 DFT 2: Analysis & Synthesis

 DFT 3: Term Snapshot

 DFT 4: Use Cases

 DFT 5: Term Tool Description

1. Overview about Models
At the first Plenary meeting of the Research Data Alliance (RDA) Data Foundation and Terminology
(DFT) working group, held in Gothenburg, Sweden, the DFT work group decided to collect data
organization models that represent concrete use cases, i.e. models that are foundational to running
systems or that specific communities especially associated with RDA are considering using as the
basis of their data systems. We have so far incorporated the following models, listed here in order of
submittance:

1. Gothenburg Sketches

1.1. Kahn Sketch
1.2. Chen Sketch
1.3. Pfeiffenberger Sketch
1.4. Wittenburg Sketch

2. Kahn/Wilensky 2006 Data Model
3. ResouceSynch Framework
4. DFT Concept Note Data Model
5. CLARIN Language Data Infrastructure
6. EPOS Earth Observation Infrastructure
7. World Climate Data Infrastructure
8. ENVRI Environmental Data Infrastructure
9. EUDAT Data Infrastructure Core Model
10. DataONE Data Model
11. Earth Science System Data (to come)

2

12. RENCI Clinical Genomics Workflow (to come)
13. Europeana Model
14. ORE Data Model
15. Fedora Object Model
16. MediaWiki Data Model
17. DataCite/EPIC Models
18. OAIS Model
19. DICE Data Model
20. Physical vs. Logical Layer Information
21. Data Processing Model
22. Chinese Earth Science Model

It is of course true that there are more data models in use and the DFT working group remains open
and eager to include, discuss and integrate them in this and related documents as appropriate. It is
important to note that this document focuses only on the above listed models and in particular
“explicitly registered data.” We recognize that there are so many other data organization and
management solutions out there. The current work also reflects that fact that much temporary data
is generated daily through the regular scientific process/workflow. Some of this will never become
part of the sphere of managed, registered and thus readily accessible, re-usable citable data. For the
purposes of the current DFT work this data is largely outside the scope of what has been attempted.
In the Term Snapshot document we briefly discuss 3 examples of local data organizations indicating
some of the difficulties to fully integrate such data into the sphere of registered data.

In fact a core of the models examined in this paper discuss Digital Objects (DO) that can easily be
referenced by a PID (persistent identifier), which can be resolved into information that supports
accessing them. No matter what local data repository system is used, software must be engaged to
access data and generate the bitstreams encoding the content looked for. This software stack can
include file systems or, for example, database query scripts, etc. Stability and correctness of the
software stack applied is crucial. File systems need to rely on an operating system, such as UNIX,
and, in the case of a relational database, on the correct functioning of the database management
system (DBMS) and on the applications developed by different experts including local ones. In this
paper, the challenges that have to do with different software stacks will not be addressed.

1.1 Model sketches at the Gothenburg Meeting
During the interactive session at the Gothenburg meeting, four different models were mapped out
on the white board and discussed. These models were only sketches, rather than complete packages
and are discussed below.

1.1.1 Kahn Sketch

This basic data model was presented and explained by Bob Kahn (CNRI).

In Kahn’s model, the key component in a core data model is the PID (persistent identifier), which has
a number of functions. In a canonical access workflow, users might first search for a specific digital
object (or collection which is one form of a digital object) using a metadata search. The metadata
description includes a PID plus additional attributes that may be used when accessing the object.
The PID is submitted to a resolution system that returns location and possibly other information.
Location information is used to access the digital object (DO) in some repository, an action that is
transparent to the user. From the viewpoint of the user, the PID provides access to a DO. The
content of the DO represented by a sequence of bits is then returned to the user. The PID can also
be used to request information about the usage of a DO, such as who has received copies of it. The
transaction system then returns a transaction record.

3

 Figure 1: Kahn’s sketch (white board)

The canonical access path in the Kahn Sketch is simple and straightforward:
 metadata search -> PID -> access path -> DO's bitstream

 Figure 2: Kahn’s sketch

Of course users can access DOs in other ways, using for example cached PIDs, using PIDs that appear
in a document or in another DO, etc. In these cases, the user can directly resolve the PID via a
resolver to get access to the bitstreams. PID records can also be used to store a variety of resource
properties, such as checksums or Repository of Record (RoR) flags, allowing the user to immediately
check integrity or to locate the original repository. Implied in this approach is that all these
properties (e.g. checksum) are stored in a typed way so that machines can interpret them. That is,
checksum is a defined data type whose definition can be stored in a data type registry as under
development by the RDA Data Type Register Work Group.

In this view one major task of a data processing infrastructure is to specify the components (PID
record, minimal metadata, etc.) and the APIs/protocols that guarantee smooth interaction between
them. This model view was the basis of the Kahn/Wilensky paper (2005) and the DFT concept note
(see 1.2 and 1.3).

1.1.2 Chen Sketch

A second basic data model was presented and explained by Yin Chen (U Cardiff) who developed the
model for her PhD thesis.

This model regards the PID as a “binding object,” which creates an association relationship between
(a set of) metadata with its data object (or resource). A four-tuple binds together the following: (1)
an ID as the binding identifier; (2) a reference pointing to the data; (3) a reference pointing to the
metadata; and (4) a set of tags to describe other attributes or to annotate the semantics of the
binding.

4

A generic binding service can be implemented, which provides various operations to support binding
manipulation (for example, creation/update/deletion), discovery (of binding/metadata/data),
communication (get metadata/data object), and validation (the consistency of the binding
relationship).

Figure 3: Yin Chen’s sketch (white board)

Figure 4: Yin Chen’s sketch

Compared with the Kahn model, it is evident that the Chen model elaborates on the nature and
context of the PID record, which is one of the essential components when accessing data. In
particular it formalizes relations in a particular way. The four tuple could be a defined data type.
Employing this data type would make for definable, useful, consistent services.

1.1.3 Pfeiffenberger Sketch

The third basic data model was presented and explained by Hans Pfeiffenberger (AWI Bremen).

Pfeiffenberger’s model emerged from experiences in data publication with the data journal Earth
System Science Data. Pfeiffenberger demonstrated the model using the example of the “Global
Carbon Budget 1959-2011,” which consists of data stored primarily in one Excel file with many
sheets, at the Carbon Dioxide Information Analysis Center (CDIAC, Oak Ridge, TN, USA), a member of
the former World Data Center System. Replicating this data into PANGAEA—an Earth and climate
science repository in Germany—would require a human curation effort, since no automatic system
exists. The data would end up as part of a huge relational database management system, which
provides output formats in CSV and HTML. Both repositories (CDIAC, PANGAEA) maintain persistent
identifiers (PID)1 for their holdings, acquired from different PID registration authorities.

This example makes clear that whatever model the DFT working group decides to adopt, that model
must be able to handle specific relations such as versions or representations of the digital object. In
both given examples, the checksums are of course different, a fact that illustrates the need for
different methods for proving identity, or the ability to prove identity at different levels. (The
metadata at both repositories are different as well).

One conclusion to be drawn from this example is that the abstract data object has its own identity
and should have its own PID and checksum and descriptive metadata. From an identity point of view

1
 We will use the term PID throughout this document. It should be noted that Pfeiffenberger and his colleagues

are using DOIs (Digital Object Identifiers) which are one specific implementation of a PID.

BID Att ID data ID rel

data

object

metadata

md

5

the PID could point to a metadata record containing both PIDs using their relations that point to the
different representations stored in different repositories. IDs in the record would then resolve to
related versions of the data, e.g. the Excel and RDB versions of the data mentioned in the
Pfeiffenberger sketch example.

 Figure 5: Pfeiffenberger’s sketch (white board)

Figure 6: Pfeiffenberger’s sketch

Discussion with RDA metadata interest and work groups suggested a key feature to that metadata
would be to describe relationships such as touched on in this sketch. Such relations would include
those between dataset and various organization (e.g. owner, publisher, rights holder, provider,
creator, maintainer etc.) but also between dataset and scholarly publication (based on citation),
between dataset and dataset (e.g. a relation of derived from or summarizing which is provenance
metadata), between dataset and infrastructure (processed by relation), between dataset and person
(creator, editor, user, reviewer…) and so forth. A tentative conclusion is that ‘flat’ metadata (such as
the original Dublin Core -DC) is not adequate and a new standard is needed.

Different approaches to organize the various flavors of metadata to handle operations like data
mutation and versioning are used. Further work to enable automated processing of data/metadata
and digital objects and the relations between them are needed.

1.1.4 Wittenburg Sketch

The fourth basic data model was presented and explained by Peter Wittenburg (MPI
Psycholinguistics).

Wittenburg’s model is very similar to the one presented by Kahn. In addition, this model was used to
briefly discuss what happens in workflows where enrichments are done.

The Wittenburg model sketch presents a triple of information that needs to be maintained:

 A PID record that points to a metadata description, to instantiations of identical bitstreams
and includes additional property information;

 A metadata description that stores a variety of properties about the object, its context and
provenance information; and

6

 A number of instantiations (copies) of the bit sequence encoding the content, which can be
hosted in different repositories.

 Figure 7: Wittenburg’s sketch (white board)

Figure 8: Wittenburg’s sketch

For replication operations, the checksum information stored in the PID record is of great relevance.
In cases when workflows are used that may change the bit sequence, a new object is created, which
requires a new PID to be registered and a new or revised metadata description to be created—again
forming a triple. This process is seen as one part of the blueprint vision for the emerging data fabric
governed by automatic workflows.

This solution is very much consistent with Kahn's solution and in conceptualizing the idea of a PID
record also makes use of something like the binding role as discussed by Chen.

1.2 Kahn/Wilensky Model
In 2006, Kahn & Wilensky wrote an article that references an earlier paper2 in which they describe
the basics of a digital object model. In essence, it is a more fully developed version of what Kahn
described in his presentation at the Gothenburg meeting (see 1.1.1). In this model, PIDs are the
principal anchor for depositing, managing and accessing digital objects that are stored in a
repository.

In this model, the user, or originator, requests a PID for certain “work,” which he or she then hands
over to a depositor (who may be the same person). The depositor then deposits a DO in a repository
by using a standard protocol (RAP = Repository Access Protocol). In doing so, the depositor offers a
PID, a bit sequence and some metadata (a minimal Key-Metadata containing the PID and other
metadata as understood by standards and data function) to be uploaded. The repository will store
the registered DO consisting of both “data” and metadata identified by PIDs. Metadata and PID
records may describe other properties by adding information to the metadata and PID records. In
particular, these records may capture information about rights, type, RoR flag (originating

2
 http://www.cnri.reston.va.us/doa.html; http://www.cnri.reston.va.us/k-w.html

PID
+prop

Bit Sequence

PID

Bit seq*

MD
+prop

MD

transfer

replication
cksm

extension
transfer

processing

http://www.cnri.reston.va.us/doa.html
http://www.cnri.reston.va.us/k-w.html

7

repository) and mutable flag. They also may contain transaction record storing access information
that can be referenced by the PID. Using this model users can access the stored information (data,
metadata and transaction record) via the RAP protocol, another action in which the PID is essential.

 Figure 9: Graphic Representation of essentials of Kahn & Wilensky’s model

Below is information about the terminology Kahn & Wilensky are using:

 originator = the creater of digital works and owner of the data; the originator can already
request handles3

 depositor = transforms digital work into a DO (incl. metadata), deposits DO, specifies access
rights and provides PID if available

 digital object (DO) = instance of an abstract data type with two components (typed data +
key metadata (as part of more metadata, includes a handle); can be elementary and
composed; registered DOs are DOs with a handle; DO content is not considered

 repository (Rep) = network accessible repositories that upload digital objects and support
access to them; has mechanisms for deposit and access; has a unique name (X.Y.Z) to be
registered centrally; stores additional data about DOs; one rep is the ROR

 RAP (Rep access protocol) = simple access protocol with minimal functionality required for
Digital Object Architecture; repositories can specify more

 Dissemination = the data stream a user receives upon request via RAP

 ROR (repository of record) = the repository where data was stored first; controls replication
process

 Meta-Objects (MO) = objects that store mainly references

 mutable DOs = indication that DOs can be modified

 property record = contains various information about DO (metadata, etc.)

 type = data about DOs have a type

 transaction record = the recordings of all disseminations of a DO

The Kahn/Wilensky model was used in several European projects as a blueprint for architecture
discussions. For presentation purposes at the DFT meeting, a simple diagram (see Figure 9) was
created showing the major components. It adds to the model, showing that in certain situations (i.e.

3
 Handles are persistent identifiers as the Handle System is creating/using them, i.e. they adhere to a specific

syntax and agreements. Handles are being issued by different authorities using different business models. DOIs
are handles as they are issued by the IDF and DataCite for example. But Handles are also issued by many other
Handle registration authorities such as EPIC (European PID Consortium) for example.

8

curation) the repository could be the actor that request PIDs. The diagram also adds a second
repository where the same bit sequence could be stored. In this case, the PID record would contain
two paths leading to the same bit sequence.

1.3 DFT Concept Note Data Model
The DFT concept note, which includes contributions from 13 colleagues many of whom are engaged
in RDA working groups, introduces a simple data model. This model overlaps with the presentations
by Wittenburg (1.1.4) and Kahn (1.1.1) and identifies the digital object using the PID and the
properties described in the PID record. The PID record includes access information pointing to the
locations where instances of bit sequences are being stored and to the original metadata
description4. The metadata description includes many properties typing the object, including context
and provenance. In addition to these the metadata includes the PID (described in Kahn’s model as
Key-Metadata). Thus like other metadata the PID and its associated information are important for
handling the digital object whether for management or access purposes.

Figure 10: Data Model described in DFT
This data model is illustrated in the hour-glass diagram (figure 11), which was developed by Larry
Lannom and is similar to a graphic depiction of the Internet in which the ID number plays a central
role. As shown in the lower part of the Figure, digital objects can be stored in many types of
containers. A PID resolution system resolves PIDs into access paths. It is the task of the underlying
software then to exchange the correct bit sequence. It should be noted here that also metadata
descriptions are digital objects. All kinds of services can now access digital objects by submitting a
PID to a resolution system (given appropriate access permissions).

Figure 11: Lannom’s hour glass model

4
 Metadata is open and can be reused and modified by anyone, therefore it is important to maintain the

notion of "original metadata" created/maintained by authorized persons.

9

This canonical access mechanism is described in another diagram provided by Larry Lannom (see
Figure 12). First, a discovery process may take place to find a suitable DO, which results in a PID. The
PID is then submitted to a PID resolver, resulting in a path that can be used to access the identified
DO, provided access rights are set appropriately. The received bitstreams, in combination with the
contextual and provenance information contained in the metadata, can be interpreted and re-used
as needed. Once again, this canonical access model is based on the triple of metadata, PID and bit
sequences stored in repositories that are resolved by a resolution system.

Figure 12: Layered Data Access

1.4 ResouceSync Data Model
ResourceSync is an emerging NISO/OAI standard to support the synchronization of web resources,
defined as anything that has a HTTP URI and returns a representation when that URI is dereferenced.
ResourceSync specifies a set of modular capabilities that a server (called a source) uses to make
resources available for synchronization. These capabilities can be implement to allow systems and
applications (called destinations) to synchronize with resources as they evolve. ResourceSync
specifies pull-based and push-based capabilities (called notifications). All capabilities are
implemented as extensions of the Sitemap protocol that is used by search engines to crawl web sites
and is widely supported by web servers. ResourceSync operates in a problem domain similar to that
of OAI-PMH, with a few differences: (a) it applies not only to metadata but to web resources in
general; and (b) it approaches the problem from a web-centric, not repository-centric, perspective.
ResourceSync specifies an exchange protocol rather than a data model; nevertheless it is possible to
reconstruct some underlying assumptions that it makes.

An overview of the model from Klein et al (2013) is shown below which organizes what happens
when a resource provider, or source publishes a capability list that outlines which of the
ResourceSync capabilities it supports. As shown in the graphic these capabilities are Resource
List(RL), Change List, Resource Dump, Change Dump, Archives, and Notification.

A resource provider, or source publishes a capability list that outlines which of the ResourceSync

capabilities it supports. Those capabilities are Resource List, Change List, Resource Dump, Change

Dump, Archives, and Notification. A Resource List (RL) enumerates the resources that are available

for synchronization. A Source recurrently publishes an up-to-date RL. The RL contains one entry per

resource (consisting of a bitstream identified by HTTP URI), as well as attributes that describe the

external properties of the resource, such as last modification, date/time, hash value, size, etc.

Resource Dumps (RD) are generated for efficient processing. Each RD contains pointers to packaged

content, and each package is a ZIP file containing the bitstreams as well as a manifest containing

information about the bitstreams, similar as in a RL.

10

In addition to RLs and RDs, a Source can recurrently publish Change Lists and Change Dumps that
pertain only to resources that have changed within a specified time interval. This increases
processing efficiency for a Destination and achieves lower synchronization latency. Change Lists can
be made available using a pull and push notification approach.

ResourceSync does not make assumptions about the organization of the data, such as whether there
are collections, special relations between data objects, or whether the bitstream contains metadata
or data. The specific content that is transferred and the way that this content is interpreted on the
destination site determines whether all relations between the different bitstreams transmitted can
be re-established by user provided software. ResourceSync, however, does introduce the notion of
“linking to related resources,” and makes various use cases explicit in the specification, including
linking to mirror copies, interlinking content and metadata about content, linking to bitstreams that
have differences between prior and current version. Because it covers web resources and linked
data that is outside of repositories it potentially represents a more general model of synchronization
and not just duplication that may be useful to additional communities using web resources.

1.5 CLARIN Language Data Infrastructure

 Figure 13: CLARIN abstract model

11

The basic model for a data organization chosen within the CLARIN research infrastructure5 is very
much influenced by the Kahn & Wilensky paper, as illustrated by Figure 13. The differences are
marginal. The repository requests a PID association with a DO once it is ingested, typed checked, etc.
However, the depositor must provide metadata and a variety of information about properties to be
stored within the PID and metadata descriptions. The repository also notes if the bit sequence is
being replicated, and the PID record is then extended to cover the path (URL) to access the new
instances.

No standard protocol has been defined to access DOs from a repository, however, it is accepted that
PIDs play the crucial role as one part of the process.

Figure 14: Collection model in CLARIN

Based on its core model, CLARIN also formulated a model for collections. A collection is defined by a
metadata object that stores a number of attributes describing properties of the collection. This
means it also has an associated PID to make it referable. In particular, a collection contains PIDs that
point to the metadata objects of the data objects it contains. The definition is recursive, i.e. a
collection can include other collections.

1.6 EPOS Earth Observation Infrastructure

 Figure 15: EPOS abstract model

The European Plate Observing System (EPOS) and the solid Earth science community in general,
acquire many diverse types of data (e.g., data from sensors installed in the field, geo-referenced field
data, experimental data in laboratories, etc.). The most peculiar type of data acquired are likely
those obtained by equipment installed in the field that feature real-time connections (e.g., digital
seismometric stations, high-resolution geodetic GPS receivers, borehole tensor strainmeters, etc.).

5
 As in many other research infrastructures, we cannot claim that this model has been implemented by all

major repositories. The transition will take quite some time, but CLARIN repositories that want to obtain a seal
for being assessed using this system need to fulfill basic requirements.

 collection
metadata

 collection
metadata

 object
metadata object
metadata
 object

metadata object
metadata

 bit sequence

 PID record

12

Based on the Kahn & Wilensky model, the EPOS seismological community drew a first sketch of its
possible data organization (see Figure 15) contemplating different stages before providing the
registered DO. However, and as noted earlier, much is still under discussion concerning these
processes, especially how best to deal with the dynamic nature of the data objects. Dynamic data
collected in real time often means an initial temporary incompleteness in the data owing to data
transmission gaps that are being filled over time. Thus data that is pre-processed into a registered,
digital object with an identifier may be mutable in the sense that it is incomplete after additional
data having been added to it.

There are several major challenges posed by incomplete real-time data streams, such as how to
refer to a specific early and probably incomplete (mutable) version of the data set, how to replicate
such data for access, and how to design persistent solutions. For now, the focus is on introducing the
digital object model within the EPOS community and matters related to versioning will be sorted out
later since best practices have not been established.

1.7 ENES Climate Modeling Data Infrastructure
The data organization model in the area of climate modeling has been worked out in the European
Network for Earth System (ENES) modeling infrastructure and has been implemented at the World
Climate Data Center. In addition to the normal data objects, ENES distinguishes metadata objects,
information objects (with more general information about the data) and a transaction record – and
all four are interlinked.

Figure 16: ENES information components

Defining metadata as objects is common practice (see CLARIN, etc.) and transaction records have
also been mentioned by Kahn (section 1.1.1). Often, HTML landing pages with broad, elaborate
descriptions of the context of data are generated, and these should also be linked (bound) to other
data entities. This is very much in line with Chen's elaboration on binding.

In addition, this data organization model can be mapped to the abstract model described in the Kahn
& Wilensky model. The climate data community aggregates objects to large collections (blobs) and
registers PIDs6 to make the “blobs” citable. Currently the model is being extended to register explicit
PIDs for each digital object created during the simulations. A “blob” can be thought of as a collection
where the metadata includes pointers to all included data objects. It is worth noting that the model
shares some commonality, at least of interest with the Pfeiffenberger sketch in the
relation/registration of digital objects with publications

6
 For this purpose DOIs are being registered.

13

 Figure 17: ENES abstract model

1.8 ENVRI Environmental Data Infrastructure
The ENVRI project (Common Operations of Environmental Research Infrastructure) gathers
European ESFRI environmental research infrastructures and is working to develop a reference
model, which is a community standard that can be used as a blueprint for all ESFRI environmental
science communities to build interoperable infrastructures. Based on the requirement analysis, the
ENVRI Reference Model captures the full data lifecycle in an environmental research infrastructure,
modelling computational characteristics and data structures in data acquisition, curation, access,
processing, and community support. At its core, it makes use of the ODP (Open Distributed
Processing) framework, an ISO standard (ISO10746, 1-4), as an overall conceptual framework for
building distributed computing systems. Based on this framework, the Reference Model describes a
principle set of sub-systems that are involved in dealing with the data at various phases.

Using a viewpoint approach, ODP provides a framework for design and specification of a large-scale
distributed system, concerning 5 different aspects, including, community requirements, data
structures, computational functionalities, engineering mechanism, and implementation methods.
ODP helps to specify ENVRI 5-common subsystems at an abstract level, it also defines useful
terminology, such as:

 Figure 18: ENVRI process model

Architecture (of a system): A set of rules to define the structure of a system and the
interrelationships between its parts.

depositor repository user

registered DO
- data
- metadata

handle generator
to come

rights
type (open
transaction record

data
metadata
access rights

deposits
via NETCDF requests

to come

stores

maintains

users build
virtual collections

Virtual Collection Object
- metadata
- mutable flag
- DOI

stores

data
publication

users register
collections with

publications

http://ec.europa.eu/research/infrastructures/index_en.cfm?pg=esfri

14

Interface: An abstraction of the behavior of an object that consists of a subset of the
interactions of that object together with a set of constraints on when they may occur. Each
interaction of an object belongs to a unique interface. Thus the interfaces of an object form a
partition of the interactions of that object.

1.9 EUDAT Data Infrastructure Core Model
The European Data Infrastructure (EUDAT) is a European cross-disciplinary initiative to design and
develop common data services thus interfacing with about 20 different scientific communities. The
services having been launched are: (1) safe replication in different flavors (logical replication based
on iRODS installation, physical replication based on gridFTP, and custom replication for repository
systems such as Fedora, D-Space, etc.); (2) data staging, where data is staged to HPC pipelines and
where result data is pushed back into the EUDAT data domain; (3) a YouTube-like service, which
allows users to upload and share data; (4) a DropBox-like service, which allows users to synchronize
directories and share data; (5) a semantic annotation service, which creates corrected and extended
versions of data objects; and (6) a metadata catalogue service. Despite all the different communities
involved, EUDAT needs to have its own core data model to be able to easily integrate the various
services.

Therefore EUDAT decided to make its data domain a domain of registered data, i.e. independent of
the type of data service it should adhere to the basic data model described in Section 1.3 as follows:
(1) A digital object has a bit sequence encoding some content that can be stored at several locations;
(2) A digital object has an explicit PID registered with a certified authority that allows identifying an
object, proving its integrity and finding its location; and (3) A digital object has a metadata
description that contains at least the PID, but usually also describes some external and internal
properties of the object to enable interpretation and reuse. The EUDAT model therefore fits with the
core model described by Kahn & Wilensky.

1.10 DataOne Data Model
DataONE’s basic data organization is based on the following principles:

 Data and scientific metadata are provided by researchers and are separate digital objects
(“units of digital content”), each being identified by a persistent identifier (PID).

 Both data and scientific metadata have system metadata associated with them that store
properties such as hash value, time stamp, owner, and obsolescence.

 Currently data and scientific metadata are immutable in DataONE.

 The relationship between data and scientific metadata is maintained by grouping them into
an Open Archives Initiative’s Object Reuse and Exchange (ORE) Aggregation (ORE
Aggregations have a PID) and by expressing appropriate relationships between them.

 Any number of data or metadata objects may be contained within an ORE package.

 ORE packages may additionally contain references to other ORE packages.

 PIDs do not have information associated with them.

 Figure 19: DataONE data model

15

Data sets7 within DataONE may be hierarchical since a single data set may contain PIDs that refer to
other ORE packages. The relations used in ORE packages include the CITO (http://purl.org/spar/cito)
documents and isDocumentedBy relations, but may include additional types of relationships as
deemed necessary by the package creator. The DataOne model as noted separates data and
metadata (each is immutable) unlike approaches that bind at least some of these in an identity
record. Relationships are handled by ORE aggregations which are discussed in sub-section 1.13.

1.11 Earth Science System Data
A group working on storm surge forecasting led by RENCI and UNC departments is studying, with the
help of high-resolution simulations, the effects of storm surge on coastal zones. Model simulations
are based on a number of observational data from sensors and from forecasts from other
institutions and government agencies - all submitted in well-known standard formats such as
netCDF, which includes a header to store metadata.

The modeling software processes the incoming data objects and generates time series data
containing predictions of storm surge for areas of interest. The data sets are stored in the netCDF
format, which is metadata compliant, with the widely used CF-UGRID convention. All data is stored
in a THREDDS compliant federated repository infrastructure so that the data and metadata can be
accessed via application programs.

With respect to data organization the netCDF format is key and standard compliant metadata as part
of netCDF objects is being separated and stored in a special database which also includes pointers to
the bitstreams. ESSD has repositories that store what they call data object but as of now, no PIDs are
being used as part of registration in the repository.

 Figure 20: ESSD data flow model

1.12 Clinical Genomics Workflow
A group generating and working with genomic data, led by RENCI and the UNC School of Medicine,
has a great interest in proper data organization and workflows to support research in an area where
much data is being managed. The group’s research involves developing a process that manages and
secures genetic data throughout its lifecycle—from obtaining raw genetic material from patients, to
analysis by a geneticist, to diagnosis and treatment decisions by clinicians for the patient.

7
 DataONE uses the term “data set” instead of “collection” since it is more clearly defined.

16

 Figure 21: Genomics data flow model (RENCI, UNC)

The process consists of seven steps: (1) preparing a pool of samples from patients and creating
metadata consisting mainly of ID lists of individuals; (2) generating raw sequencing data files, which
are image files; (3) using specialized software to transform image data into text files, including
sequencing information and quality scores in the FASTQ format; (4) aligning sequencing information
with reference genome data to understand which sequences are variants that could be markers for
diseases. All information is stored in SAM files, which are then transformed to Binary Alignment Files
as highly compressed forms; (5) merging more samples of sequenced and processed data; (6)
conducting pattern processing to determine the quality of the sequencing and alignment steps; and
(7) extracting files that include specific variants for further analysis. These files bundle variant
sequences, some header information (metadata) and some position information.

The data organization in the case of sequencing data is straightforward and results from the clear
workflow in this kind of research. Management of the data objects is handled locally by IDs such as
patient IDs.

1.13 ORE Data Model
The Open Archives Initiative’s Object Reuse and Exchange (ORE) is a data model and associated RDF
vocabulary to describe and exchange aggregations of web resources. The model is based on the web
architecture and leverages semantic web and linked data principles. An ORE Aggregation represents
a set of web resources and provides an identity for that set. An ORE Aggregation is described by an
ORE Resource Map (ReM), an RDF document that uses the ORE vocabulary and that is published to
the web. A ReM is a named graph. The ReM asserts the finite set of constituent resources (the
aggregated resources) of the aggregation, and it can express types, properties, and relationships
pertaining to the aggregation and its aggregated resources. Both an Aggregation and the ReM that
describes it are identified by HTTP URIs, but PIDs can be associated with them using appropriate
relationships.

Figure 22 below shows an Aggregation, described by a Resource Map consisting of aggregated
resources, and some properties, types, and relationships. The PID for the Aggregation is expressed
via the ore:similarTo relationship. In the context of the Research Object effort, which includes ORE at
its core (see http://www.w3.org/community/rosc/), the aspect of identification of Aggregations by
means of HTTP URIs and PIDs need to be worked out.

http://www.w3.org/community/rosc/

17

Figure 22: ORE aggregation model

1.14 Fedora Object Model
Fedora is a repository system that supports an explicit and well-described digital object model which
can cover different object types: (1) Data Objects containing digital content (data); (2) Service
Definition Objects storing models/descriptions of services; (3) Service Deployment Objects
describing how services are delivered; and (4) Content Model Objects allowing defining classes of
digital objects. In the context of this paper, only Data Objects will be discussed in more detail. It
should be noted that in Fedora, digital objects are embedded in XML structures according to the
FOXML schema.

 Figure 23: Fedora schematic object model

Basic elements are data-streams representing the raw content (images, text, metadata, etc.) as
bitstreams or as references to external locations. Each DO can include several streams. These
streams are described by object properties, i.e. the properties describe the characteristics of all
streams included - a feature that could be used to bundle versions and presentations. Below are the
types of object properties Fedora suggests for describing a data stream:

 Datastream Identifier: an identifier for the datastream that is unique within the digital
object (but not necessarily globally unique)

 State: the datastream state of Active, Inactive, or Deleted
 Created Date: the date/time that the datastream was created (assigned by the repository

service)
 Modified Date: the date/time that the datastream was modified (assigned by the repository

service)
 Versionable: an indicator (true/false) as to whether the repository service should version

the datastream. By default the repository versions all datastreams.
 Label: a descriptive label for the datastream

18

 MIME Type: the MIME type of the datastream (required)
 Format Identifier: an optional format identifier for the datastream. Examples of emerging

schemes are PRONOM and the Global Digital Format Registry (GDRF).
 Alternate Identifiers: one or more alternate identifiers for the datastream. Such identifiers

could be local identifiers or global identifiers such as Handles or DOI.
 Checksum: an integrity stamp for the datastream which can be calculated using one of many

standard algorithms (MD5, SHA-1, etc.)
 Byte stream Content: the "stuff" of the datastream is about (such as a document, digital

image, video, metadata record)
 Control Group: pertaining the the byte stream content, a new datastream can be defined as

one of four types, or control groups, as follows:
o Internal XML Metadata -
o Managed Content
o External Referenced Content
o Redirect Referenced Content -

See http://www.fedora-commons.org/documentation/3.0b1/userdocs/digitalobjects/objectModel.html for
more.

Each DO (as opposed to a data stream) is identified by a PID which is part of the DO. Some data
streams are generated automatically such as a DC description per stream containing key object
metadata (ID, state, date, version, format, checksum, etc.). Using simple graphics we’ve represented
this model in Figure 23.

The DO serves as a container, is associated with a PID and includes metadata describing some
generic DO properties. It contains several data streams covering content, metadata, relations, etc.,
i.e. all included streams and possible relationships between them are being described. In this
graphic, the arrows implicitly mean “containing” and the PID can be interpreted as “representing”
the DO.

 Figure 24: Fedora digital object model

Figure 24 shows an example how a Fedora container can be used to bundle different data streams. It
should be noted that Fedora DOs can be expressed by ORE Resource Maps. Typed relations
guarantee that machines can find the expected content.

http://www.fedora-commons.org/documentation/3.0b1/userdocs/digitalobjects/objectModel.html

19

1.15 Europeana Data Model
Europeana is a portal which harvests metadata from a large variety of museums, archives and
libraries and thus allows users to search for interesting objects. Because it harvests from many
providers, it is confronted with a large variety of metadata standards. Currently the basic standard,
often a least common denominator for data sharing, is Dublin Core, which implies an enormous
reduction of the rich information that could otherwise be offered at the portal. To alleviate the need
to reduce the data, a new (meta) data model was invented called EDM (Europeana Data Model) that
offers the flexibility to not only cope with the variety of data, but also to allow enrichments of the
data. EDM is based on the principles of the Semantic Web community, i.e. it makes use of RDF, RDFS
and OWL semantics where possible, knowing that metadata statements are assertions and thus can
be transformed into RDF triples with explicit relational semantics. Thus EDM is not based on a fixed
schema. Instead, it provides generic semantic classes and properties and offers an anchor to which
other models can be attached. The system makes it unnecessary for metadata providers to change
their practices except to be explicit about the semantics used.

EDM makes some very important distinctions about what to include as documentation, which were
also present in other models: (1) It includes both “work” or “original creation” as well as “various
digital representations” of that work or even of fragments of it; (2) It offers metadata descriptions
describing “works” and their “digital representations.” There can be several metadata descriptions
from different origins describing the same object in different ways; and (3) Objects containing other
objects are possible.

Different metadata describing one object and/or its various representations are treated as ORE
aggregations with their own identities. EDM provides a number of super-classes and super-
properties that allow users to see entities provided by metadata providers as specializations. Also
EDM includes a number of classes to represent contextual entities, which allows the data to connect
to other knowledge sources. An important aspect of EDM is to establish useful mappings and
relations in order to develop a coherent metadata domain that can be queried.

It is not the task of this paper to elaborate on the details of EDM, but to note that it provides useful
ideas for minimal metadata. As a mechanism it should be noted that all non-mutable objects,
including metadata descriptions, are identified by stable URIs.

1.16 MediaWiki Data Model
MediaWiki and many other content management interaction platforms have a simple model: the
Wiki knows about web pages, their versions, and links between different content pages and external
information sources, most of which can be easily configured for collaborative purposes. References
are in the form of links (i.e. URIs which, in the often short-lived wiki user community, are often no
more than URLs without persistency).

All structuring of data is a task the data manager must organize. The Wiki pages are often landing
pages with descriptions (prose and/or keyword metadata in tables) and references to file systems or
databases where the data objects are stored. Navigation and search tools that index web pages from
the descriptions allow users to search for interesting data.

1.17 DataCite/EPIC Data Models
DataCite and EPIC are not initiatives that maintain repositories and thus they do not hold data.
However, they have a service that allows resolving PIDs8 into access paths among other functions.
DataCite primarily refers to data collections that are citable in the way publications are citable and

8
 EPIC is issuing Handles, DataCite is issuing DOIs which are also Handles.

20

that are stabilized results of a completed research workflow. EPIC allows researchers to register any
data object that is created as part of daily research workflows, which means the requirements for
the persistence of data are less strong.

In both cases, the assumption is that there is meaningful content (data streams) stored at various
locations, that the PID can resolve to the access paths of these locations, and that the PID record
contains attributes that describe properties, and point to its metadata, provenance descriptions, etc.
In DataCite, citable metadata plays an important role, since it is metadata that can immediately be
retrieved when accessing the PID record. DataCite has developed a schema for its metadata9, which
has been widely adopted by EPIC. Both EPIC and DataCite can integrate additional attributes, and
these might be adopted in the RDA PID Information Type working group. So far neither make
assumptions about the availability of metadata or provenance descriptions associated with the data
stream.

In conclusion, both models fit nicely with the model presented by Kahn & Wilensky.

1.18 OAIS Model
The Open Archival Information System (OAIS) is a well-known reference model for a dynamic and
extendable archiving system. An archive is an organization which requires a close interaction
between system components and humans to guarantee user access over many years. The model is
an abstract specification, introduces relevant and now common terminology, and does not prescribe
any specific implementation. The model describes how producers generate and ingest submissions,
which steps need to be taken to have a functioning archive system, and how users can access the
stored data via distributions.

Producers generate Submission Information Packages (SIP) and ingest them into the archive system.
Internally, SIPs are transformed into Archival Information Packages (AIP) which is stored in the
archival system.

Information Package is a container that binds the Content Information with
associated Preservation Description Information. Preservation Description Information
is information that is essential to adequately preserve the particular Content Information
to which it is bound. An Information Package is serialized using Packaging Information.
This Packaging Information also provides local hooks (often called ‘Fragment
Identifiers’) into the Information Package to allow accessing each file of which the
Content Data Object of the Content Information consists. From ACCESS INTERFACES FOR
OPEN ARCHIVAL INFORMATION SYSTEMS BASED ON THE OAI-PMH AND THE OPENURL
FRAMEWORK FOR CONTEXT-SENSITIVE SERVICES

Jeroen Bekaert, and Herbert Van de Sompel, 2005

Package transformation step can include many checks (for completeness, integrity, format
coherence, etc.). Administration of all AIPs is handled as a data management component. Users
(consumers) can access the stored objects by issuing queries. An access component transforms AIPs
into Dissemination Information Packages (DIP), which, once access permissions have been checked,
is handed over to the user for further processing. A Preservation Planning component takes care of
replication, migration, emulation and curation to guarantee long-term archiving and interpretability.
An Administration Component keeps track of and logs all processes.

9
 http://schema.datacite.org/

http://schema.datacite.org/

21

Although the OAIS model is not very specific, it can be a starting point for some terminology and it
includes higher level packaging concepts not found in other approaches. It does not seem to rely on
a PID approach but have more local identifiers within an Information Package.

1.19 DICE Data Model
In the realm of the iRODS policy-based design and development project, the DICE group came up
with a comprehensive data model which has a number of core design goals. The data model focuses
on the processes that comprise data management, and the mechanisms that automate the
execution of these processes. Example processes include administrative tasks (data replication,
format transformation, usage report generation), policy enforcement (integrity, authenticity,
arrangement), and assessment (repository trustworthiness, policy compliance).

Complementary to the notions of data objects and collections are operations that need to be carried
out to support life cycle management, long term survival, access, interoperability and trust with
respect to integrity and authenticity. Explicit policies are designed to govern all operations on
officially registered data objects and collections10, and procedures are functions that implement
these policies. The WG on Practical Policy has defined a concept graph detailing the relationship
between the purpose for a collection, and the corresponding collection properties, policies,
procedures, and persistent state information.

Recently the DICE colleagues stated that for them

 Data are the objects that are being managed, and consist of bits or bytes.

 Information is the application of a name to an object and the categorization/organization of
a set of objects.

 Knowledge is the specification of a relationship between named objects through a
transformational process.

According to this dynamic perspective, information is a static property that can be stored as a
metadata attribute while data are bits deposited in a storage system.

For DICE the term data collection (which is knowledge in the above sense) is central since it will be
the set of related data objects sharing some properties that will be the subject of management,
curation, transformation, migration and other processes. A comprehensive set of name spaces is
used to identify collections and files, and the environment in which the files are managed (users,
storage, metadata, procedures and policies). Metadata associated with each name space are
controlled by policies that enforce the desired properties.

10

 Collections are aggregation of objects.

22

Policy-based data management systems enable the concept of active objects and active collections.
Active objects or collections have persistent identifiers pointing to procedures that will generate
information or derived data products. Accessing the active collection causes the procedure to be
applied to the digital objects within the collection. Also metadata can be dynamically generated or
extended by applying a procedure to digital data. The metadata then consists of the information
generated by reification of knowledge relationships encapsulated within the procedures that were
applied to the digital objects within the collection.

1.20 Physical vs. Logical Layer Separation
Still most of the researchers are using file systems to store data and include metadata type of
information about the content in the file and directory names and their canonical relations by means
of directory organizations. The cloud community realized, primarily for efficiency reasons, that it is
more optimal to specify a simple interface (API) that basically offers a hash value as a unique key to
identify a stored object in the cloud and to access it with the help of underlying parallel operations
transparent to the users. In fact no property information describing the object is provided through
the API, this information in cloud systems is managed by layered applications.

Therefore we can state that the development of the cloud technology helped distinguish and
separate different types of information. On the one hand we have the physical information about a
digital object (basically how to access its bitstream encoding the content) and all the logical11
information which includes the typical metadata information typing the digital object, provenance

information saying something about the generation
history, access rights information, relational information
indicating how the object relates with other objects12,
etc. The hash values used in the interfaces can be seen as
internal identifiers but they do not replace the globally
available persistent identifiers as discussed in the models
by Kahn, Yin Chen, Wittenburg and others.

The conclusion that can be drawn from this development
fits with the suggestions of many models that
independent of the system that is used to store the
bitstream content (file system, cloud system, database
system) we need to separate physical and logical
information in our complex data domain.

1.21 Reference Process Model
In RDA Europe and EUDAT about 38 interviews have been carried out with research infrastructures
and research departments from different scientific disciplines about the way they are dealing with
data and about their organization. In addition about 12 interviews were carried out in the German

11

 We use here the term "logical" although we actually speak about all kinds of different types of metadata. It
should be noted that the term "logical" is well-defined for example in database technology to describe
structures, constraints, etc. The emphasis in on the non-physical and more abstract level.
12

 We can distinguish again many types of relational information. Canonical relations emerge from the creation
process (all primary data of a specific simulation or experiment, etc.). Other relations emerge from the objects'
embedding in collections that have been created by users to carry out a certain analysis. Other relations can be
annotations to fragments of the content, relations between content fragments of different files (semantic
weaving), etc.

23

Radieschen project with the same intentions confirming the findings. Some explicit models included
in the interviews as the ones from CLARIN, EPOS, ENES etc. have been presented already.

Although many of the colleagues that have been interviewed do not mention conceptual terms
explicitly or are even not aware of the relevance of making certain information explicit (metadata
often is kept in the mind of the researchers or in ephemeral spreadsheets, IDs are kept by knowing
the path in directory systems, etc.) we can draft an underlying processing reference model that
describes the steps that are being taken by the different researcher groups in daily practice.

This abstract processing model (Figure below) can roughly be divided in three phases:

 preprocessing phase

 data processing/maintenance phase

 publishing phase

Preprocessing Phase
Raw data being created by sensors, simulations, crowd sourcing and other sources often need to be
pre-processed for various reasons (error detection and removal, mapping with reference data,
transformations/reductions, etc.), before they are released for further usage. There are some special
cases where this reference model is not accurate enough:

 In the case of dynamic data people want to immediately work on the first data fragments
being received while additional data fragments are filling gaps and while some preprocessing
might still be carried out.

 In the case of huge data amounts as being generated by the LHC experiment at CERN for
example data management and distribution activities are being started immediately after
some preprocessing as integral parts of automated workflows.

 etc.

24

When the pre-processing phase is finished some curation tasks are being carried out which typically
results in screened data, associated metadata (in whatever form this metadata may exist – file
names, spreadsheets, etc.) and a “canonical” (or natural) collection organization represented in
some form.

Processing Phase
In a domain of registered data ready for re-use by others a registration process will start that will
result in persistent identifiers registered with an authorized institution, in metadata registered in a
proper registry (or catalogue) and in data stored in a certified repository. The relations between
these are indicated by some models in this document. To prepare all kinds of processing steps
(management, analysis, etc.) people in general do some collection building which can include data
from other repositories, i.e. it is often not the “canonical collection” formed at creation time that is
used as basis for subsequent processing. In particular for analysis purposes (big data) different DOs
are virtually aggregated in different collections to carry out specific calculations. The processing step
results in new digital objects that again should be registered and described by metadata.

Publishing Phase
The final steps require in general human intervention. e-Publications are the product of scientific
theorization and they can be subject of analysis operation. The publication of data collections
associated with an ePublication is a step that in general requires additional quality checks etc.

Comments

 As indicated above we have seen during the interviews that often the steps are not being
carried out explicitly by the teams, i.e. they do not have a model in mind, but work along
established habits. Let’s give two examples:

o Many teams do not use PIDs but they know the paths in file systems for example. It
is well-known that after a few months and eventually some system operations users
can’t recall easily where their versions are stored, which versions they used, etc.

o Many teams use various ways to manage metadata without storing all relations
explicitly. Also here people are losing control about how they are using data.

 It has been indicated in this processing model (see figure above) where the start-up RDA
working groups are active.

o The DFT group describes the basic concepts and terms of the core of the processing.
o The PIT group is busy to specify the interface for requesting and resolving PIDs.
o The MD group is registering metadata schemas to facilitate MD creation and

interpretation and is working to identify metadata components (packages).
o The DTR group amongst others specifies a type registry that will facilitate the

interpretation of any data object.
o The PP group is collecting policies that can guide the various processing steps to

create reproducible science.

1.22 Chinese National Data Infrastructure for Earth System Science13
In the Chinese National Data Infrastructure for Earth System Science (Geodata.cn), we adopt the
triple of metadata, data service and data document as the data organization and publishing model
which is shown as Fig.1.

13 Presented by Yunqiang ZHU; Department of Geo-data Science and Sharing, State Key Lab of
Resources and Environmental Information, Institute of Geographic Sciences and Natural Resources
Research, Chinese Academy of Sciences

25

Fig.1 data organization and publishing model of Geodata.cn

Data service is the encapsulation of different access ways of one data object by uniform model. One
data object is likely accessed by one or multi ways according to its storage or publish ways. For
example, land use spatial data is probably stored in ArcGIS shape file, Oracle database, FTP server or
published to web-GIS or WMS (web map service) simultaneously. So we can encapsulate land use
spatial data as corresponding file service, database service, FTP service, HTTP service and Geographic
Information (GI) service by uniform data service model. Data service model is shown as Fig.2 that
includes five elements, i.e. service identifier, name, type, description (optional) and parameters
(parameter key and value pairs) and presented by XML.

Fig.2 data service model

Different data service has corresponding service parameters, such as name and path in repository of
file service; DB server URL, DB SID, user name and password of database service; server URL, path,
user name and password of FTP service; name and web page URL of HTTP service; map server URL,
map service ID, map name of GI service, that are encapsulated by XML key and value pairs.
Metadata is data about data which describes identifier, temporal and spatial extent of data, content,
quality control methods and data contributors’ contact information and so on.

Data document is the detailed description of data object that covers data attributor fields and their
semantic description, such as numerical unit, value domain, data temporal-spatial datum, scale or

Data object

Metadata

Data service n

Data service 2

Data service 1

……

Data document

Preview

image

MD
ID

Data repository

Data repository

Data repository

MD
ID

MD
ID

Data service

Service identifier

Service name

Service description

Service parameters

Parameter key

Parameter value

n

1

1

1

1

1

Service type

1

26

resolution and granularity, data provenance and process method, as well as data storage and usage
method, data intellectual property right declare and citation requirement. Through metadata
identifier, we bind metadata with data services (1:1 or 1:n) and metadata with data document (1:1).
Also we can bind preview images with metadata, so that users can get the profile of the data before
they access it.

In geodata.cn data model, the purpose of metadata is quick discovering data object, and data service
guarantee users accessing detailed data repositories, while data document is the guide of data usage
for users. So users can not only easily discover and seamlessly get data resources, but also correctly
use data resources. Moreover, we can bind several data services with one metadata, so users can
select one or several data services they wanted. As the above land use spatial data (ArcGIS shape
format), if the data has been published as web GIS, data provider can publish file service which need
upload land use data file to server and HTTP service which need point out the URL of web GIS. After
users discover this land use data through metadata, they can browse the data through the web GIS
or download the data directly.

The detailed workfolw of Geo-data publish and sharing is shown as Fig.3. For providers, firstly they
need publish metadata, data services and data document as well as preview image of data object to
Geodata.cn protal. Secondly, they need bind data services, data document, preview image with
metadata by the unique metadata identifier. For users, firstly they search metadata and read the
metadata description and cooresponding preview image. After that they can decide whether the
data meet their requirement. If the answer is yes, they will continuly access data services to
download data resources directly or browse data online. They can download related data document
to guide their data usage.

1.23 Additional Models
DFT IG will continue to collect models and use cases as they are also being collected in other WG/IGs
such as PP WG, DF IG, etc.

2. References
Klein, Martin, et al. "A technical framework for resource synchronization." D-Lib Magazine 19.1
(2013): 3.

27

Appendix A: Terms used
Here provide a working list of relevant terms that have been mentioned/introduced within the
different models. An analysis of how they are being used and how they relate to each other will be
made in the next part & version of the document. Some bundling is done here, but this is not meant
to replace the analysis.

 architecture

 data model, data organization, data lifecycle

 digital object, data object, object properties, service objects

 registered data, real time data, dynamic data, time series data

 persistent identifier (PID), PID record, binding identifier, reference resolution,

 PID attributes (checksum, data reference, metadata reference, etc.)

 DOI, Handle, URL, URI

 repository

 bitstreams, instances of bitstream (copies, replicas), synchronization

 resource list, resource dumps, change lists, change dumps

 software stack (file system, database query, database management system, RoR flag,
mutable flag, type, citation metadata, etc.)

 (canonical) access workflow, processing/curation workflows, provenance metadata

 metadata, key metadata, metadata object, metadata description, metadata catalogue,
minimal metadata, property record, metadata attributes, discovery, context information,
OAI-PMH, system metadata, descriptive metadata, citation metadata

 fixed schema, flexible schema, metamodel

 transaction record

 information objects, landing pages

 versions, presentation versions

 collections, data sets, aggregations, ORE resource map, container

 relations, RDF assertions, RDFS, OWL

 originator, depositor, users, archivist, curator, steward,

 API, protocol

 dissemination, content replication, content interpretation, content re-use

 data acquisition, data curation, data processing, data access

 identity, integrity, authenticity

 active data, active collections

 data publication, virtual collection

 policies, procedures

