SOCoP Workshops & GeoSpatial Ontology Patterns

Gary Berg-Cross
SOCoP Executive Secretary
RDA IG GeoSpatial
Ontologies and Ontology Patterns

- Many levels & types of ontologies
- Something like DOLCE is quite complex and so are domain ontologies like SWEET
- One may pick some small repeating patterns (ODPs) out of large ontologies.
- ODPs, like OWL, are tools for ontologies
 - They are more easily understandable with good explicit documentation for design rationales
 - Robust
 - Can be used to build on modularly for reoccurring problems needing representation
 - Capture best practices
 - Should help bridging/integrating ontologies
- We focus on content ODPs using domain expertise rather than logical ODPs etc.
 - `owl:Class:_:x rdfs:subClassOf owl:Restrictions(on:_:y)
 - Inflammation>on rdfs:subClassOf (localizedIn some BodyPart)`

Dolce Ultra Lite?

Patterns

“Geo” Top

“Geo”-Domain

Apps
Uses Cases & Demos)
Problem
It is hard to reuse only the “useful pieces" of a comprehensive (foundational) ontology, and
- the cost of reuse may be higher than developing a scoped ontology for particular purpose from scratch
- “For solving semantic problems, it may be more productive to agree on minimal requirements imposed on .. Notion(s)
 - Werner Kuhn (Semantic Engineering, 2009)

Solution Approach
- Use small, well engineered, modular starter set ontologies with
 - explicit documentation of design rationales, and
 - best reengineering practices
- These serve as an initial constraining network of “concepts” with vocabulary which people may build on/from for various purposes.
“Unfriendly logical structures, some large, hardly comprehensible Ontologies” (Aldo Gangemi)

In SOCoP we tend to leverage existing work, but build patterns from bottom up data views
We View Simple Ontologies Serve as Concept Model with Vocabularies

Space namespace GEONet “Ontology” a simple vocabulary for describing physical spaces and the connections between them.

"A Building is a kind of Hypsographic Feature." Hypsographic is a top-level classification from GEONet and just means something that's found on land. It goes on: "A Public Building is a kind of Building, and a Recreational Venue is a kind of Public Building."

But this is not really a coherent, rationalized pattern.

Old link http://frot.org/ontobot/ for work related to this ontology
We can generally outline what we mean by Motion in a vocabulary of lexical terms to represent concepts (Start of a Path) typically used in this particular domain.

All paths have a start point.

End point could be represented in a coordinate system (or a changed state?)

- participants: path, moving object, start, goal

We remain general in the pattern since this is a cognitive activity & the concept has flexible semantics depending on human intentions and perspectives. The pattern can generate alternate descriptions conforming to alternate interpretations.

For details, see:
Geo-VoCamp Patterns – Path from an info perspective

- name
- start object
- end object
- path description
- medium
- surface

Motion

hasPath

hasPath

Moving Object

is part of

part of

DUL: event: start event

hasStart

hasEnd

hasDescription

hasMedium

hasSurface

OwlClass: name

DUL: Physical Object: medium

DUL: Physical Object: surface

Owl Class: description

Light constraints
We Align & Compose New ODP from Old: New Pattern for Semantic Trajectory

ODPs are relatively autonomous but conceivably composable with other schemas. E.g. compose a Semantic Trajectory Pattern from Trajectories/spatial paths/segments. Point Of Interest (POI)- observation area etc.

- Preserves axioms from other ODPs
- Adds concepts

Grounded Data for Model:
```
:mikestrip a :SemanticTrajectory; :hasSegment [a :Segment; :from :fix1; // mikeshome:to :fix2;// rest stop :traversedBy :fordFocus], [a :Segment; :from :fix1; // rest stop :to :fix2],// WrightStateU :traversedBy :fordFocus], [a :Segment;::from :fix1; // WrightStateUniversity:to:fix2],//.. :fixn].:mike a foaf:Person:mikesFordFocus a motion:MovingObject.:garminEtrexVistaC a:Source.geo:Geometry rdfs:subClassOf :Position.:mikesFordFocus a motion:MovingObject]:motion1 a......
```
Another ODP Example & its Evolution – Setting: Something kind-of temporal (the sixties, the 19th century) or something kind-of spatial (France)

Definition of a setting.
A setting is a geospatial temporal region within which objects, activities and events occur. Our settings of interest are all the settings in which the objects, activities, and events of interest occur. Based on Worboys & Hornsby, (2004)."From objects to events: GEM, the Geospatial event model.”
Revised Setting ODP Example Evolution (from UCSB GeoVoCamp 2014)

1814 AD or 2014?

Grafton Street

Transport or commerce features?

Mark Schildhauer, Gary Berg-Cross, Charles Vardeman, Pascal Hitzler, Helen Couclelis, Francis Harvey, George Planansky, Ben Adams, Andrea Ballatore, Krzysztof Janowicz, Dave Kolas
Making Commitments to an ODP: Maps - Legends Example

Ontological commitments

- Should Geographic Feature Types be classes or instances?
- Do we want to explicitly define the depictedBy relation?
- Is stating that a Legend consists of LegendItems redundant?
- ...

\[\mathbb{N}_C = \{ \text{LegendItem, Symbol, Label, FeatureType} \} \]
\[\mathbb{N}_R = \{ \text{consistsOf, isLabelFor, isLabelOf, depictedBy} \} \]

\[T \subseteq \neg \exists \mathbb{N}.T \]

\[\text{LegendItem} \subseteq \exists \text{consistsOf}.Symbol \cup \exists \text{consistsOf}.LegendItem \]

\[\text{Label} \subseteq \exists \text{SymbolizedBy}.Symbol \cap \forall \text{SymbolizedBy}.Symbol \]

\[T \cup \leq 1 \text{isLabelFor}.T \]

\[T \cup \leq 1 \text{isLabelOf}.T \]

\[T \cup \leq 1 \text{SymbolizedBy}.T \]

\[\text{Label} \subseteq \exists \text{isLabelFor}.\text{FeatureType} \]

\[\text{Label} \cap \text{Symbol} \subseteq \bot \quad \text{(also for Symbol, Label, FeatureType, LegendItem)} \]

\[\text{isLabelOf}^- \circ \text{isLabelFor} \subseteq \text{depictedBy}^- \]

\[\neg \exists \text{consistsOf}^- \subseteq \text{Legend} \]

\[\ldots \]
Backup on Methods
ODP Work Takes Place at VoCamp Workshops

ODPs produced at 2-3 day GeoVoCamps

- We seek clarified agreement & reduced ambiguities/conflicts on geospatial/earth science phenomena that can be formally represented in:
 1. Constrained, engineered models to support understanding, reasoning & data interoperability and/or
 2. Creation of general patterns that provide a common framework to generate ontologies that are consistent and can support interoperability.

- We like data-grounded work since:
 - *Much of the utility of geospatial ontologies will likely come from their ability to relate geospatial data to other kinds of information.*
Workshop Ingredients

1. Goals of sessions set at start
2. 2-3 Workgroup Teams with a topic for ODP development
3. Use Phased Structure Sessions
 1. From Conceptualizations to Formalizations
 2. Lightweight Methods
Workgroups Include Multiple Roles: Semantic Engineering is a Social Process

Domain/Data Expert

Ontologist

Facilitator

Note taker
Logic of Work Sessions

Day One Intro, Topics, Methods...

Start Group organization & Introductions, goals and process

After lunch Group Work on Concepts, Vocabulary & Model(s)

After break Group Work on Draft Models

At end of day Group Reports on status

At end of day Report back to whole and wrap up

After break Prepare Report

After lunch firm up products and test against data

After break Work Groups polish, formalize models

2nd day draft final model & initial formalizations
Choose lightweight approaches grounded by scenarios and application needs.

- Low hanging fruit leverages initial vocabularies and existing conceptual models to ensure that a semantics-driven infrastructure is available for use in early stages of work.
- Reduced entry barrier for domain scientists to contribute data.

Simple parts/patterns & direct relations to data

Triple like parts

Constrained not totally Specified.
Grounded

Ecological..
Combine Lightweight with incremental Approaches: Make Richer Schemata & Reusable Patterns from simple part – say a triple

Land Parcel, owner… area, boundary, encumberance…. 19 sq ‘, located at.

Every parcel is a unit of property, described by a boundary, & has parts, area, right of way……

Simple Feature-State Model (from GRAIL) becomes a richer schema

Semantics in Geospatial Architectures