Materials Data IG, IMMR WG & Ontologies TG

Co-Chairs: James Warren (NIST), Laura Bartolo, (CHiMaD/Northwestern University) Takuya Kadohira (NIMS), Adham Hashibon (Fraunhofer IWM), Alysia Garmulewicz (Universidad de Santiago de Chile)

General Agenda: Thursday 24th October 2019 Breakout 4 09:00 - 10:30

Undergraduate Center - U149 U6 (Konecranes)

- Brief Introduction: James Warren, National Institute of Standards & Technology
 - 5 minutes

- Panel Discussion on Diverse RDA Outputs, FAIR Data, & materials data lifecycle
 - Zach Trautt, NIST; Asahiko Matsuda, NIMS; Emanuele Ghedini, UNIBO
 - Panel Discussion: 45 minutes
 - General Discussion: 20 minutes

- International Materials Resource Registries WG
 - Ray Plante, NIST: 10 minutes

- Materials Ontologies TG, New Co-Chair & Update
 - Gerhard Goldbeck, Goldbeck Consulting & Cate Brinson, Duke University: 10 minutes
Materials Science and Engineering and Research Data Alliance: An Individual Perspective

Zachary Trautt, Material Measurement Laboratory, National Institute of Standards and Technology, USA
About Research Data Alliance

By the Numbers
- Launched as a community-driven initiative in 2013
- More than 8,800 members
- Participation from 137 countries
- 50+ Interest Groups (IGs)
- 30+ Working Groups (WGs)

Group Functions
- IGs operate without a time limit, and are committed to enabling data sharing, exchange, or interoperability
- WGs have a lifespan of 12-18 months and are the main vehicle for producing RDA Outputs
Research Data Alliance
(my manual tagging)

- Interest (Agnostic), 38
- Interest (Topical), 18
- Working (Agnostic), 28
- Working (Topical), 8

GROUPS

- International Materials Resource Registries WG
- RDA/CODATA Materials Data, Infrastructure & Interoperability IG
Research Data Alliance (my manual tagging)
FAIR Focused Groups

Interest Groups
- GO FAIR IG
- Data Discovery Paradigms IG
- Domain Repositories IG
- Open Science Graphs for FAIR Data IG
- Metadata IG
- Data Foundations and Terminology IG
- Vocabulary Services IG
- Software Source Code IG

Working Groups
- FAIR Data Maturity Model WG
- FAIRSharing Registry: connecting data policies, standards & databases WG
- RDA / TDWG Metadata Standards for attribution of physical and digital collections stewardship
- Research Data Repository Interoperability WG
- InteroperAble Descriptions of Observable Property Terminology WG (I-ADOPT WG)
- Data Description Registry Interoperability (DDRI) WG
- Metadata Standards Catalog WG
- Research Metadata Schemas WG
Persistent Identifier Focused Groups

General PID Concerns
- PID IG
- PID Kernel Information Profile Management WG

Persistent Identifiers for Things
- Data Citation WG
- Data Type Registries WG & #2
- Physical Samples and Collections in the Research Data Ecosystem IG
- Persistent Identification of Instruments WG
- Software Source Code Identification WG
Materials and Cross-Cutting RDA Groups

RDA/CODATA Materials Data, Infrastructure & Interoperability IG

- Data Citation WG
- Data Type Registries WG & #2
- Physical Samples and Collections in the Research Data Ecosystem IG
- Persistent Identification of Instruments WG
- Software Source Code Identification WG

Many more…
Challenge: Diverse Material Types

biological biomaterials

ceramics

metals and alloys

metamaterials

organic compounds

organometallics

polymers

semiconductors

Data Citation WG

Data Type Registries WG & #2

Physical Samples and Collections in the Research Data Ecosystem IG

Persistent Identification of Instruments WG

Software Source Code Identification WG

Many Subclasses and Interfaces...

Many more…
Our Past Work

International Materials Resource Registries WG
International Materials Resource Registries WG

- First WG established by RDA/CODATA Materials Data, Infrastructure & Interoperability IG
- Develop metadata standards required to establish a network of International Materials Resource Registries

A resource registry is a system that harvests and makes searchable high-level metadata descriptions of resources held by data repositories, archives, organizations, websites, and services to aid scientists in industry, universities, and government labs in the discovery of data relevant to their research and work interests.
Proposed Timeline in Case Statement

Month: 1-3
2016/01 - 2016/03
- Recruit Subject Matter Experts
- Discuss and Survey Existing Service Providers
- Meet and Draft First Version of Metadata Schema / Vocab

Month: 4-8
2016/04 - 2016/08
- Disseminate Draft Schema / Vocab and Solicit Feedback
- Meet and Refine Schema / Vocab
- Establish Pilots - NIST (U.S.) - MDF (U.S.)

Month: 9-16
2016/09 - 2017/04
- Implement Pilots - NIST (U.S.) - MDF (U.S.)
- Fine Tune Schema / Vocab

Month: 17-18
2017/05 - 2017/06
- Prepare Final Report
Primary Output

Technology
Output: Resource Registry Federation
Output: Resource Registry Federation
Output: Open Source Software
Simple Knowledge Organization System (SKOS) version of Materials Data Vocabulary

Contact: Andrea Medina-Gomez, D
Identifier: doi:10.18419/nmrr14
Last modified: 2017-11-01

Description

A version of the Materials Data Vocabulary structured as Simple Knowledge Organization System (SKOS). The XML was originally created by the Tierra Tool software. This vocabulary describes the applicability to material science of records in the NIST Materials Resource Registry (NMRR) (https://materialsregistry.nist.gov). The NMRR allows for the registration of materials resources, bridging the gap between existing resources and the end users. The NMRR functions as a node in a federated system, making the registered information available for research to the materials community. This is being developed at the National Institute of Standards and Technology and is made available to solicit comments from the Material Science community. (An Excel version of the file is also included in the distribution for ease of use.)

Subject Keywords: materials science, controlled vocabulary, XML, vocabularies

Data Access

These data are public.

Files

<table>
<thead>
<tr>
<th>Name</th>
<th>Media Type</th>
<th>Size</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials_Registry.vocabs_20180418.xlsx</td>
<td>application/vnd.opencalainformats-office-document-spreadsheet+xml</td>
<td>119.5 KB</td>
<td></td>
</tr>
<tr>
<td>Materials_Registry_vocabs_20180418.xlsx.sha256</td>
<td>application/octet-stream</td>
<td>64 Bytes</td>
<td></td>
</tr>
<tr>
<td>NMRRVocab20171102.xml</td>
<td>application/octet-stream</td>
<td>327.0 KB</td>
<td></td>
</tr>
<tr>
<td>NMRRVocab20171102.xml.sha256</td>
<td>application/octet-stream</td>
<td>64 Bytes</td>
<td></td>
</tr>
</tbody>
</table>
Output: Metadata Schema

A repository for the development of resource metadata schemas and related tools.

Dependencies

- python 2.7x (python 3.x not yet supported)
- jsonschema 2.6.x or later
- jsoncompare 0.8.16 or later
- resutils
Primary Output: Technology

Strengths
- We Built It, Please Come!
- Working Solution
 - Federation of Services
 - Open Source Software
 - Schema
 - Vocabulary
- Enables a path for growth
 - More registries in more places
 - More users

Weaknesses
- Technology changes rapidly
 - Keeping up with software and security updates/patches
 - Keeping up with Innovation
- Requires support model
 - Data producers
 - Data consumers
 - Service providers
- Requires sustainability model
 - Cost Drivers/Funding Sources
 - Demonstrate Value
Keeping up with Innovation...
March 2018: Written Report Published
6 Months Later...
September 2018: Google Dataset Search

Making it easier to discover datasets

In today's world, scientists in many disciplines and a growing number of journalists live and breathe data. There are many thousands of data repositories on the web, providing access to millions of datasets; and local and national governments around the world publish their data as well. To enable easy access to this data, we launched Dataset Search, so that scientists, data journalists, data geeks, or anyone else can find the data required for their work and their stories, or simply to satisfy their intellectual curiosity.

Similar to how Google Scholar works, Dataset Search lets you find datasets wherever they're hosted, whether it's a publisher's site, a digital library, or an author's personal web page. To create Dataset search, we developed guidelines for dataset providers to describe their data in a way that Google (and other search engines) can better understand the content of their pages. These guidelines include salient...
September 2018: Google Dataset Search

Google Dataset Search Beta

Search for Datasets

Try boston education data or weather site:noaa.gov

Learn more about including your datasets in Dataset Search.
What should we do next?
Materials and Cross-Cutting RDA Groups

RDA/CODATA Materials Data, Infrastructure & Interoperability IG

- Data Citation WG
- Data Type Registries WG & #2
- Physical Samples and Collections in the Research Data Ecosystem IG
- Persistent Identification of Instruments WG
- Software Source Code Identification WG

Many more…
What should we do next?

RDA/CODATA Materials
Data, Infrastructure & Interoperability IG

External Groups/Efforts

Cross-Cutting RDA WGs and IGs
Launch “n” working groups?

RDA/CODATA Materials
Data, Infrastructure & Interoperability IG

External Groups/Efforts

Cross-Cutting RDA WGs and IGs

…
What should we do next?

RDA/CODATA Materials
Data, Infrastructure & Interoperability IG

Cross-Cutting RDA WGs and IGs

External Groups/Efforts
Harmonization and Demonstration?

RDA/CODATA Materials
Data, Infrastructure & Interoperability IG

External Groups/Efforts

Harmonized Guidance?
(Refreshed Regularly)

Demonstration Projects?
(as Working Groups)

Cross-Cutting RDA WGs and IGs
Possible Demonstration Projects

Microstructure Repository
- 1st Workshop: 2018-11-15
- 2nd Workshop: 2019-05-13

Materials Microscopy Data
- 1st Workshop: 2018-10-25
- 2nd Workshop: 2019-05-15

FAIR High Throughput Experimental Data
- Deployed Registry and Repository in 2017
- Tested with Interlaboratory Study (Paper Published 2019-03-19)
Example Demonstration Project

High Throughput Experimental Materials Registry and Repository
Overview
Currently there are no national facilities in which a comprehensive high-throughput experimental approach to novel materials discovery and commercialization can be implemented, there is no brick and mortar high-throughput experimental facility devoted to providing the formatted and accessible data required for a complete MJU development of even a single class of materials, let alone the many that are crucial to addressing major national and global challenges. A major goal, therefore, should be an effort to deploy a federated network of high-throughput experimental (synthesis and characterization) tools, which are integrated with a materials data infrastructure. A critical component of this infrastructure is the registry (or federation of registries) which enables the global discovery and identification resources within the federated network.

System Features
- High-Throughput Libraries
- High-Throughput Instruments
- Data
- Software
- Organizations
- Expertise

Database Statistics
- Projects: 1
- Library: 6
- Sample: 616
- Diffraction Data: 616
- Spectral Data: 616
- Combinatorial Map: 1
- Instruments: 3
- Software: 3
- Organizations: 3

PID for Things RDA WGs and IGs

RDA/CODATA Materials Data, Infrastructure & Interoperability IG

Extending Schema.org
RDA/CODATA Materials Data, Infrastructure & Interoperability IG

Extending Schema.org

PID for Things RDA WGs and IGs

RDA/WGs

Bootstrap

D3.js

Vue.js

Cordra REST API

mongoDB.

elastic

HTE Materials Registry and Repository

23/10/19

rd-alliance.org

@resdatall | @rda_europe
FAIR Leveraging of the Materials Resource Registry Vocabulary
I1: (Meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representation

What does this mean?
Humans should be able to exchange and interpret each other’s data (so preferably do not use dead languages). But this also applies to computers, meaning that data that should be readable for machines without the need for specialised or ad hoc algorithms, translators, or mappings. Interoperability typically means that each computer system at least has knowledge of the other system’s data exchange formats. For this to happen and to ensure automatic findability and interoperability of datasets, it is critical to use (1) commonly used controlled vocabularies, ontologies, thesauri (having resolvable globally unique and persistent identifiers, see F1), and (2) a good data model (a well-defined framework to describe and structure (meta)data).

Examples

- The RDF extensible knowledge representation model is a way to describe and structure datasets. You can refer to the Dublin Core Schema as an example.
- OWL
- DAML+OIL
- JSON-LD
- See example data models for Predicted gene-disease associations from text mining and Tissue gene expression.
- See data models from EBI in the 'documentation' links on this page: http://www.ebi.ac.uk/rdf/

Links to Resources

- https://en.wikipedia.org/wiki/Programming_language
I2: (Meta)data use vocabularies that follow the FAIR principles

What does this mean?
The controlled vocabulary used to describe datasets needs to be documented and resolvable using globally unique and persistent identifiers. This documentation needs to be easily findable and accessible by anyone who uses the dataset.

Examples

- Using the FAIR Data Point ensures I2.

Links to resources

- FAIR Data Point specification
demo dataset

Type: Dataset

Dataset
This schema is for describing a Dataset in Cordra.

@id
20.500.12043/7238c9dccc5fa00de4147

Name
demo dataset

Subjects
This is for controlled vocabulary terms.

Subject 1
20.500.12043/9c7aeceb1-382c-419f-89d5-95392fa32bd6
Name: transmission electron microscopy

Accountable Persons
transmission electron microscopy

Type: DefinedTerm

DefinedTerm

This schema is for describing a Defined Term in Cordra.

@id

20.500.12043/9c7aebc1-3b2c-419f-89d5-95392fa32bd6

Name

transmission electron microscopy

@context

schema

http://schema.org

skos

http://www.w3.org/2004/02/skos/core#

broader

skos:broader

narrower

skos:narrower
<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>inDefinedTermSet</code></td>
<td>string</td>
</tr>
<tr>
<td><code>schema:inDefinedTermSet</code></td>
<td></td>
</tr>
<tr>
<td><code>@type</code></td>
<td>DefinedTerm</td>
</tr>
</tbody>
</table>

In Defined Term Sets

<table>
<thead>
<tr>
<th>In Defined Term Set 1</th>
<th>20.500.12043/70638c6ba02ff25247a4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>NIST Materials Resource Registry Vocabulary</td>
</tr>
</tbody>
</table>

Broader Terms

<table>
<thead>
<tr>
<th>Broader Term 1</th>
<th>20.500.12043/5073a600-3111-4191-98e4-16ec49bd711f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>microscopy</td>
</tr>
</tbody>
</table>

Narrower Terms
NIST Materials Resource Registry Vocabulary

Type: DefinedTermSet

DefinedTermSet

This schema is for describing a Defined Term Set in Cordra.

<table>
<thead>
<tr>
<th>Identifier 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>@id</td>
</tr>
<tr>
<td>20.500.12043/70638c6ba02ff25247a4</td>
</tr>
</tbody>
</table>

Identifiers

<table>
<thead>
<tr>
<th>Identifier Type</th>
<th>Identifier Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOI</td>
<td>10.18434/T4/1435037</td>
</tr>
</tbody>
</table>

Name

NIST Materials Resource Registry Vocabulary
Public Data Resource

Simple Knowledge Organization System (SKOS) version of Materials Data Vocabulary

Contact: Andrea Medina-Smith
Identifier: doi:10.18434/T41436037
Last modified: 2017-11-01

Description

A version of the Materials Data Vocabulary structured as Simple Knowledge Organization System (SKOS). The XML was originally created by the TemaTres software. This vocabulary describes the applicability to material science of records in the NIST Materials Resource Registry (NMRR - https://materials.registry.nist.gov/). The NMRR allows for the registration of materials resources, bridging the gap between existing resources and the end users. The NMRR functions as a node in a federated system, making the registered information available for research to the materials community. This is being developed at the National Institute of Standards and Technology and is made available to solicit comments from the Material Science community. (An Excel version of the file is also included in the distributions for ease of use.)

Subject Keywords: materials science, controlled vocabulary, XML, vocabularies

Data Access

These data are public.

Files

<table>
<thead>
<tr>
<th>Name</th>
<th>Media Type</th>
<th>Size</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials_Registry_vocabulary_20180418.xlsx</td>
<td>application/vnd.openxmlformats-officedocument.spreadsheetml.sheet</td>
<td>119.5 kB</td>
<td></td>
</tr>
<tr>
<td>Materials_Registry_vocabulary_20180418.xlsx.sha256</td>
<td>application/octet-stream</td>
<td>64 Bytes</td>
<td></td>
</tr>
<tr>
<td>NMRRVocab20171102.rdf</td>
<td>application/octet-stream</td>
<td>337.0 kB</td>
<td></td>
</tr>
<tr>
<td>NMRRVocab20171102.rdf.sha256</td>
<td>application/octet-stream</td>
<td>64 Bytes</td>
<td></td>
</tr>
</tbody>
</table>
Building Digital Object Graphs
Building Digital Object Graphs

Objects Linked to 1 NIST-Synthesized Library

Objects Linked to 3 NREL-Synthesized Libraries

Objects Linked to MRR Vocabulary

Library

Material 1

Material 2

Sample Position

Deposition Ratio

Objects Linked to 1 NIST-Synthesized Library

Objects Linked to 3 NREL-Synthesized Libraries

Objects Linked to MRR Vocabulary
Thanks!

Any mention of commercial products is for information only; it does not imply recommendation or endorsement by NIST.
Semantics development and vocabulary platform case studies: PoLyInfo RDF and MatVoc

Asahiko Matsuda, Masashi Ishii, Takuya Kadohira
MATSUDA.Asahiko@nims.go.jp

Materials Data Platform Center,
National Institute for Materials Science

Work on PoLyInfo RDF was supported by Cabinet Office, Government of Japan, Cross-ministerial Strategic Innovation Promotion Program (SIP), “Technologies for Smart Bio-industry and Agriculture” (funding agency: Bio-oriented Technology Research Advancement Institution, NARO).
A.M. thanks Mineharu Suzuki (NIMS) for the discussion on metadata.
Materials Data Platform Center at NIMS

Create the data
Experiments & Calculations

Text/Data mining
Use the data
Analysis & Integration

Store the data
Store and manage

Mission:
Accelerate these four actions for materials integration and data-driven materials science

Publish the data
Repository

NIMS NOW, 19 (1), 2019
The question

“How can we assemble, integrate, harmonize, and leverage our materials data?”

1. Give PIDs to everything
2. Link them together
3. Query by following those links

But exactly how?

⇒ Case studies:

1. **PoLyInfo RDF** for polymer information
2. **MatVoc** for collaborative vocabulary management and distribution
Connecting our polymer database to other DBs

- NIMS has an extensive polymeric materials database PolyInfo (334k properties), but it is not linked to other data sources.
- Linking to external DBs would open so much possibilities.

Monomer DBs
- PubChem by NIH
- Nikkaji (Jpn Chem Substance Dict)

Polymers
- polyethylene
- polypropylene

Monomers
- ethylene
- propylene

PubChem by JST
RDF triples and SPARQL queries

RDF triples

“Finland’s currency is the Euro”

Subject: Finland
Predicate: currency
Object: Euro

“Finland” “currency” “Euro”

SPARQL queries (for DBpedia)

What are the currencies for all the countries?

```sparql
PREFIX dbo: <http://dbpedia.org/ontology/>
SELECT DISTINCT ?country ?currency
WHERE {
}
```

Which countries have Euro for their currency, where are their capital cities, and what are the populations of those cities (if data exist)?

```sparql
PREFIX res: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>
SELECT ?country ?capital ?population
WHERE {
  ?country dbo:currency res:Euro ;
  dbo:capital ?capital .
  OPTIONAL {?capital
dbo:populationTotal ?population .}
}
ORDER BY DESC(?population)
```
Polymerization information in PoLyInfo

Polymer of ID x ...

Has composition unit of ID y ...

Has polymerization path ID z ...

Has source monomer ID w ...

Link to monomer DBs

66,546 triples
89,847 triples
54,280 triples
Total 210,673 triples
Conceptual link between PoLyInfo and monomer DBs

@prefix nikkaji: <http://stirdf.jst.go.jp/cde/nikkaji/> .
@prefix ns1: <https://polymer.nims.go.jp/> .

ns1: rdfM0101001 skos:closeMatch nikkaji:J1.939I .

16,440 triples
For polymers:

What about other fields?
Or for day-to-day data management?
4CeeD
Coordinated Science Laboratory University of Illinois at Urbana-Champaign
https://4ceed.github.io/
Subject keyword(s): data management, private cloud, microservice-based, compute-storage
4CeeD is a distributed web-based software framework that supports Capturing, Curation, Coordination, Correlation, and Distribution of scientific data from scientific instruments, such as TEM, SEM, AFM and others, to private cloud compute-storage cyber-infrastructure. For more information, visit 4CeeD's website at https://4ceed.github.io

ABAQUS
Dassault Systemes - Dassault Systemes
http://www.3ds.com/products-services/simulia/portfolio/abaqus/overview/
Subject keyword(s): software
*Sold as part of the SIMULIA package. SIMULIA delivers a scalable suite of unified analysis products that allow all users, regardless of their simulation expertise or domain focus, to collaborate and seamlessly share simulation data and approved methods without loss of information fidelity. The Abaqus Limited Edition product suite offers powerful and...
A vocabulary for browsing records in the NIST Materials Resource Registry

Top concepts:
- Data origin
- Characterization methods
- Computational methods
- Material types
- Properties addressed
- Structural features
- Synthesis and processing

Three-layer hierarchy

Helped us gain a bird’s-eye view of materials science
Vocabulary used for designing MDPF metadata

NIST MRR Materials Data Vocabulary

- Data origin
- Characterization methods
- Computational methods
- Material types
- Structural features
- Properties addressed
- Synthesis and processing

Metadata for NIMS MDPF data entries

- Data origin
- Characterization metadata
- Computational metadata
- Specimen metadata
- Properties metadata
- Synthesis and processing metadata
‘Tiered’ metadata model for MDPF data

METADATA

Mandatory metadata

- Common metadata: ID, Depositor, Instrument, Data origin...

Domain-specific metadata

- Characterization metadata: Method, Environment...
- Specimen metadata: Material type, Structure...
- Property metadata: Physical properties, Units...
- Synthesis/Process metadata: Processed date, Temperature...
- Calculation metadata: Computer software, Version...

DATA

Primary parameters (uncontrolled)

- Characterization primary params: Data
- Specimen primary params: Data
- Property primary params: Data
- Synthesis/Process primary params: Data
- Calculation primary params: Data

- Recognized by all systems
- Some systems

Domain-specific metadata are further divided into primary parameters (uncontrolled) which are specific to each domain.
User feedback on the vocabulary

“"The vocabulary is missing this term”
 E.g., semiconductors should have silicon

<table>
<thead>
<tr>
<th>Material types</th>
<th>semiconductors</th>
<th>II-VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material types</td>
<td>semiconductors</td>
<td>III-V</td>
</tr>
<tr>
<td>Material types</td>
<td>semiconductors</td>
<td>extrinsic</td>
</tr>
<tr>
<td>Material types</td>
<td>semiconductors</td>
<td>intrinsic</td>
</tr>
<tr>
<td>Material types</td>
<td>semiconductors</td>
<td>n-type</td>
</tr>
<tr>
<td>Material types</td>
<td>semiconductors</td>
<td>p-type</td>
</tr>
</tbody>
</table>

“I think this characterization method should be classified as spectroscopy, not microscopy.”

etc.
Hierarchy \rightarrow Graph
Versioned file \rightarrow Dynamic system

Adding new concepts / relations
New materials, Sub-domain-specific concepts, Different focus and hierarchy…
Wikipedia (on MediaWiki) and Wikidata (on Wikibase)

Wikipedia infobox

Wikidata statements
Materials Data Vocabulary in NIMS Wikibase

hd:Q38 (scanning Auger electron microscopy) -> wdt:P8 (has broader) -> hd:Q37 (microscopy)
e.g. All items that have <broader> <material types> and both en + ja language labels
System overview and distribution to other applications

MatVoc

- aware applications

Contribute (GUI)

Import (API)

NIMS

Users

Importer

script

“Wikibase Ecosystem”

MatVoc.nims

JSON API

docker

Query Service

SPARQL

API

Read MatVoc

MatVoc-aware applications

Query MatVoc with SPARQL

Authority file

Periodic batch

MatVoc-unaware applications

Federated SPARQL queries across distributed endpoints

NIMS MDPF applications

"Wikibase Ecosystem"

RDF

MatVoc

with SPARQL

NIMS MDPF applications

"Wikibase Ecosystem"
Conclusion

1. We demonstrated integration between our polymer database and other databases (Nikkaji, PubChem) using Linked Data technologies. Further work is ongoing to align the semantics with even more institutions’ databases.

2. For more generic applications and day-to-day heterogeneous data management, we took hints from the Materials Data Vocabulary to design the common metadata schema. We set up a Wikibase system to allow the researchers to add concepts, and designed other applications to read from it.

 Both of these represent the concepts in RDF triples, can be queried by SPARQL, and can be easily federated with other databases.
EMMO

AN ONTOLOGY FOR PHYSICAL SCIENCES

Emanuele Ghedini

University of Bologna

RDA 14th Plenary Meeting

Helsinki, Finland - 23 - 25 October 2019

SimDOME
What is the EMMO?

The EMMO is a multidisciplinary efforts within the EMMC and a network of H2020 projects aimed to the development of a standard representational framework, in the form of an ontology, based on current materials modelling and characterization knowledge.

European Materials Modelling Ontology

Analytical Philosophy (e.g. mereotopology, semiotics, logic)

Physical Sciences (e.g. physics, chemistry, material science, engineering)

Information and Communication Technologies (e.g. reasoners, platforms, formats)
What is the EMMO?

The EMMO aims to facilitate the work of materials experts in connecting stakeholders in the field of materials development and characterization, making use of the standardization efforts already performed within the EU, and facilitating the development of materials modelling software tools (i.e. OSP).

CEN WORKSHOP AGREEMENT
CWA 17284
April 2018

Materials modelling – Terminology, classification and metadata
What is the EMMO?

User Cases
(materials, devices, processes)

Measurement Techniques

Physical Phenomena

Models

Mathematics

Properties

Databases

Data Formats

CONCEPT (METADATA)
DATA

CONCEPT (METADATA)
DATA

CONCEPT (METADATA)
DATA

CONCEPT (METADATA)
DATA

DATA

DATA

DATA

USER CASE
From real world entities...

ONTOLOGY
...through a formal knowledge-based representational system...

INFORMATION
...to a digital representation.
EMMO application fields

Science
standard reference concepts to facilitate understanding between scientific communities (multi-disciplinarity)

AI
formalized knowledge system ready to be used in AI applications

Modelling
connections between real world entities and available physical models (OSP, translation) at different scales

BigData
data schematics for specific applications and facilitate semantic extraction for data harvesting

Characterization
formalization of the entity-measurement-property connection to facilitate data exchange between experimentalists and modellers

Industry
formalization of the manufacturing process and product, connection with material databases and modelling software to facilitate business decisions
What EMMO is and what is not

SIGN
a physical entity that stands for another physical entity (an icon, a digital twin, a symbol, a word, a C++ class)

OBJECT
any physical entity

USER WORLD

INTERPRETER
a human being or a machine that can recognize object attributes (e.g. color, shape)

SIGN
The EMMO helps users (interpreters) providing them a way to communicate their interpretations but is not itself an automatic connection between real and ontological world.

(Dear user, you can lie about what you see, so you responsibilities!!!!) have great

EMMO is a formalized system of signs (representation)

EMMO is not the truth about the world, but only a tool!

ONTOLOGY WORLD

PHYSICAL WORLD

INTERNET

Charles S. Peirce
semi-otic theory
The EMMO helps you to provide signs that represent correctly what a real world entity is, using formal logic.

The EMMO prevents you from giving unrealistic representations of real world entities.

The EMMO tells you nothing about the existence of the object that stands for the sign. Is up to the interpreter to connect ontology world to real entities world.
The EMMO is structured in hierarchical modules covering, from general to particular, all the aspects needed to address materials modelling activities.

It includes also a semiotic and formal language branches, to be able to represent symbols (token that have no meaning) and their meaning according to different interpreter (e.g. semantic extraction during data harvesting).

In this sense, the EMMO can contain itself and other ontologies as well!
EMMO Core

ABSTRACT CONCEPTUAL LEVEL
Clear separation between collection and item (based on mereotopology).
collection individuals are collection of items according to defined concepts (e.g. red entities). items individuals stand for something that is ‘real’, i.e. a 4D portion of the universe.

In the EMMO abstract concepts are represented as the collections that concretize them (e.g. friendship is the collection of all friendship acts) embracing a rigorous nominalistic view.

GEOMETRIC/TOPOLOGICAL LEVEL
items unfolds in space (3D) and time (1D) and can be sliced in pure time, pure space or hybrid space and time entities.

PHYSICAL LEVEL
Real world entities exists only in full 4D spacetime (3D space and 1D time), i.e. you can’t partition a cake in infinitely thin slices!
A spacetime that can be perceived by (interact with) the interpreter is a physical.
If the spacetime entity is empty in terms of perception, is a void.
The EMMO makes use of **mereotopology** set of logical axioms, extended to 4D entities, to represent formally the evolution in time and space of entities.

Prof. Achille Varzi (Columbia University, NY) is one of the top mereologists and will act as advisor for EMMO development within SimDOME project.
The EMMO identifies a parthood hierarchy in physicals, by introducing the concept of:

- **elementary** as the fundamental, non-divisible, constituent of entities (i.e. atomistic mereology)
- **state** as a physical whose parts have a constant cardinality during its life time (similar to endurants)
- **existent** as a succession of states (similar to perdurants)

so that a physical entity can be defined using a multiscale perspective.

An elementary particle, that expresses some fundamental physical properties (e.g. mass, charge, spin) can be represented by an elementary in a physics ontology.

However, in another material ontology an elementary can be something else, depending on the perspective (e.g. a brick for a LEGO ontology, a furniture component in a IKEA ontology)
By defining the mereological relation of **direct parthood**, the EMMO is able to describe entities as made of parts at different level of **granularity**.

The individuals are forming a **directed rooted tree**:
this is paramount for **cross scale interoperability** (vertical interoperability) that is the basis for **multi-scale modelling**.
Reduction and **broadcasting** can be easily implemented by navigating in this type of tree.
A first draft of a material ontology branch has been developed within the EMMO to demonstrate the powerful expressiveness of direct parthood in identifying granularity levels.

The material branch is defined with large use of axioms with the has_direct_part relation that put constraints about the attributes of each individual that will be declared in material classes (e.g. a molecule can’t have part crystal).
The EMMO material branch is also generic and flexible enough to represent quantum systems in a way that is compatible with different interpretations (i.e. Copenhagen, De Broglie-Bohm) and approximations (e.g. Born–Oppenheimer).

Hamiltonian parameters can be derived by axioms that define the specific quantum system class (i.e. the sub-parts). Wave function collapse can also be represented within the EMMO mereological framework.
Since the EMMO must represent models and properties (which are signs that stand for a physical entity), the semiotic process must be described also within the EMMO itself.

The concepts of Peirce semiotics (interpreter, object, sign) are included in the semiotic branch, together with the semiosis process.

Besides that, a branch for representing symbols and symbolic entities (e.g. characters, numbers, words) has been introduced, based on formal languages approach.

Symbols of a formal language need not be symbols of anything.
The **symbolic** class is the superclass of the math branch, since mathematics is seen in the EMMO as a formal language, based on an alphabet of **mathematical symbols**.

Mathematical expressions that have a meaning (i.e. are used to represent physical phenomena) are also **signs** (e.g. physics equations).

The **formed** class includes formal languages constructs (i.e. list of symbols) that follows the rules of a specific language.
In the EMMO, a property is a sign that stands for an object that the interpreter perceived through a well-defined observation process.

A property is always a partial representation of an object since it reflects the object capability to be part of a specific observation process.

Property subclasses are specializations that depend on the type of observation processes. A quantitative property are related to an observation subclass called measurement.

e.g. the property 'colour' is related to a process that involves emission or interaction of photon and an observer who can perceive electromagnetic radiation in the visible frequency range.

Properties usually rely on symbolic systems (e.g. for colour it can be palette or RGB). Quantitative properties always refer to a symbolic system.
EMMO Properties

How to represent the ‘thing’ on the left within the EMMO? It depends on the interpreter:

- **physical**: it is a physical object, i.e. the black and white pixels on the screen
- **existent**: it’s a physical that unfolds in time retaining its meaning (i.e. does not change class)
- **symbolic**: is made of symbols coming from a code (i.e. math and western alphabet) for an interpreter used to this alphabet
- **sign/property**: has a meaning for an interpreter who is skilled in numbers measurement units
- **physical property**: stands for a physical property of another physical entity according to an interpreter who knows a bit of physics

The semiotic branch paves the way for the inclusion in the EMMO of formal languages and data recognition.

Change **raw data** into **information** through **interpretation** of the format.

Semantic extraction is represented within the EMMO at the same time for several interpreters!
A model is a sign that not only stands for a physical or a process, but it is also a simplified representation, aimed to assist calculations for its description or for predictions of its behaviour.

A model represents a physical or a process by direct similitude (e.g. small scale replica) or by capturing in a logical framework the relations between its properties (e.g. mathematical model).
EMMO Models

- physical (object)
- real world entity
- interpreter
- measurement (observation)
- has_spatial_part
- has_temporal_part
- is_representation_for
- is_a
- has_spatial_part
- is_represented_by
- is_a
- equation
- properties
- math
- physical properties (sign)
- model
- instrument (interpreter)
- physical phenomena
- properties
EMMO Models

Horizontal interoperability:
one user case, multiple modelling solutions.

Linking between properties database, models and user cases to facilitate validation and data collection.
EMMO has very limited and strictly categorized relations, easy to use, understand and maintain. All goes down to two primitive relations families:

MEREOTOPOLOGY
- Parthood
- Slicing

SEMIOTIC
- Representation

Relations such as participation to a process falls under mereology.

E.g. you have to be part of a 4D process in order to participate to it

Mereology is also used to declare symbols that constitute symbolic entities.

E.g. unit of measurement as part of a physical property

EMMO taxonomy is strongly based on reasoning, up to level of expressivity allowed by OWL-DL.

(EMMO concepts would be better expressed in FOL or even Second Order Logic)
EMMO maintainers

Who will ensure a constant development and testing of the EMMO in the next years?

NMBP-24-2016
European Materials Modelling Council - CSA 2019
EMMO foundations laid within this CSA project.

DT-NMBP-09-2018
Digital Ontology-based Modelling Environment for Simulation of materials 2022
EMMO applications cases and integration within a OSP expected within 2020-2021.
Team of philosophers, ICT experts and applied scientists.

NMBP-25-2017
Materials Modelling Marketplace for Increased Industrial Innovation 2022
EMMO applied to larger materials modelling communities and marketplaces infrastructures.
Virtual Materials Market Place 2021

... more existing projects to involve and more to come in the next DT-NMBP calls (hopefully)!!!
EMMO: where to find it?

- https://emmc.info/emmo-info/ or https://emmo.tech

- EMMO v0.9.9 available on: https://github.com/emmo-repo/emmo

- EMMO Authors (IP Owners): Emanuele Ghedini (UNIBO), Gerhard Goldbeck (GCL), Adham Hashibon (Fraunhofer), Georg Schmitz (ACCESS), Jesper Friis (SINTEF)

- Manuscripts to be submitted in peer review journals
 - Foundations of EMMO
 - EMMO: an ontology for applied sciences
 - Authors: Emanuele Ghedini, Gerhard Goldbeck, Adham Hashibon, Georg J. Schmitz, Jesper Friis

Attribution 4.0 International (CC BY 4.0)
EMMO NEXT STEPS

• **Publish** the EMMO v1.0 version with more consistent mereotopological foundations

• **Provide documentation** for the EMMO and its specific approaches implemented in the modules (e.g. papers, reports)

• Looking for **taxonomical compatibility** (at least) with other important ontologies (e.g. BFO, CHEBI, IAO)

• Use it on the field within **other H2020 projects**
THANKS FOR YOUR ATTENTION

EMMO authors:

Emanuele Ghedini (University of Bologna)
Gerhard Goldbeck (Goldbeck Consulting)
Adham Hashibon (Fraunhofer IWM)
Georg Schmitz (ACCESS)
Jesper Friis (SINTEF)
International Materials Resource Registry: Outputs and Current Activities

Raymond Plante -- NIST
Final Report of Outputs

- Presented at P11 (Berlin)

- Internal WG review of Final Report Document:
 - Current version is RC4
 - Please send comments to working group mailing list (imrr-wg@rd-groups.org) by 20 November 2019

- To be submitted to secretariat for RDA-wide RFC afterward.
Output Summary:
Registry Federation Framework

Data Centers
- Local Publishing Registry
 - Dataset
 - Dataset
- Local Publishing Registry
 - Database
 - Dataset

Data Collections
- Full Searchable Registry
 - e.g. operated by NIST
- Full Searchable Registry
 - e.g. operated by CHI/MaD
- Small Data Providers
 - Dataset
- Materials Data Facility
 - Data Repository

Harvest (pull)
Manual Entry
Output Summary:
Registry Federation Framework

- **Requirements**
 - Resource metadata exchange protocol
 - Identifiers
 - Distinguish between own records and those harvested from other sources
 - Communicate when resources are no longer available
 - Require minimal record validation
 - *Our implementation: OAI-PMH. (Others: Linked Data Platform (LDP), ResourceSync,...)*
 - Common Metadata Schema/Format
 - Openly defined
 - Associate a globally unique identifier
 - Validate-able
 - Low-impact evolution mechanism (e.g. extensions)
 - *Our implementation: XML, XML Schema*

- **Architecture, Recipe for registry interaction**
Output Summary:

Metadata

- XML Schema
 - Extension mechanisms
 - Different Types of Resources:
 - Data Collections Databases Software Informational Sites Organizations
 - Different types can have different data associated with them
 - New types can be defined. (Semantic Asset)
 - Applicability to different domains
 - Place to include domain-specific metadata
 - Can support multiple domains simultaneously

- Materials Science Vocabulary
 - 3-tiered subject terms
 - Drives faceted browsing
 - SKOS definition available
Output Summary:

Working, Populated Registry Federation

- Implementation: NIST Materials Resource Registry
 - Adaptation of the NIST Configurable Metadata Curation System (CDCS)
 - https://github.com/usnistgov/MaterialsResourceRegistry

- Two instances:
 - NIST: https://materials.registry.nist.gov/
 - CHiMaD/MDF: https://mrr.materialsdatafacility.org/

- Over 350 records
Post-WG Activity:

Supporting Semantic Assets for MSE

- Adding “Semantic Asset” as a resource type to MMR
 - Cover vocabularies, ontologies, types, registries, ...
 - To encourage sharing use across continents

- MSE Vocabulary Use & Maintenance
 - Elsevier pilot: considering tagging MSE journal articles with vocabulary terms

- MDII Task Group
 - Expanding impact of vocabularies and registries
Post-WG Activity:
Enhancing Discovery

- Additional registry instances in the world
- NIST: Software improvements
 - Improving usability
 - Stronger support for PIDs and PID resolution
- Deep Discovery: leveraging data provider search tools
 - Register search services
 - Tools can pass search queries to a repository’s or database’s search service for retrieving dataset/measurement-level results
Task Group on Materials Ontologies
https://sites.google.com/view/rda-materials-ontologies-tg/home

RDA/CODATA Materials Data IG

Gerhard Goldbeck (GCL, UK)
Cate Brinson (Duke, US)
Clare Paul (AFRL, US)
Scope

- Materials includes any substance in any state at any scale.
- Any ontology about materials or directly linked to materials.
 - E.g. characterisation, modelling, processing, safety etc
- Building ontologies as well as application of ontology.
Examples/Use of Ontologies

- Database integration
 - Connected data!
 - Discover new trends
 - New materials candidates

- Easier Database queries
 - Ontology organises data by domain knowledge: contrast to database which is organised by IT need.
 - Querying can be done by scientist using script!

- Materials Modelling: interoperability, translation;
- Characterisation, analytical: standardisation
- Materials Modelling/Data Marketplaces

Range of disciplines related to materials with their own efforts in taxonomies and ontologies
Where do we want to get to?

- A materials focus on ontologies
- A connected ecosystem
- Interoperability
- Widest possible agreement about top-level concepts and relations
Semantics allows a resource to be understood by both humans and machines → promote interoperability.

- **List**: glossary, catalogue ID
- **Informal hierarchy**: table of contents, XML
- **Thesaurus**: synonyms, association relations
- **Taxonomy**: formal hierarchy, RDFS
- **Ontology**: Logics, OWL

Adapted from:

Machine can **interpret** information and **reason**.

Machine can process information due to **compatible syntax**.
Ontology levels

- Express fundamental concepts of physics and materials science
- Models, Properties, Processes, Materials (and their structure/granularity), Measurements etc
- Specific taxonomies and ontologies
Status of Materials Ontologies

- No common Upper Ontology
- Most have mid level or domain focus, e.g. Structural Materials, Composites, Steels, Catalysts, etc
- Lack of connection between chemistry and materials efforts
What groups are working on ontologies?
Which topics and what are their projects?
Establish improved communication.

Document and Categorise
- International Federation of Materials Resource Registries
Further Objectives

- Making materials ontologies FAIR.
 - repositories for Materials Ontologies etc

- Collect use cases and requirements
 - Set up online means for collection (e.g. github).
 - Create problem statements and sample instance graph related to use case

- Recommendations on a governance system

- Ontology interoperability framework

- Ontology alignment

- Interfacing with other domains (e.g. engineering)
In materials science,..., a large number of research groups and communities are building and developing data-driven workflows. However, much of the data and knowledge is stored in different heterogeneous data sources maintained by different groups. This leads to a reduced availability of the data and poor interoperability between systems in this domain. **Ontology-based techniques are an important way to reduce these problems and a number of efforts have started.**

Towards Standardised Documentation of Data through taxonomies and ontologies (CSA)

Focus area: Digitising and transforming European industry and services (DT)

EC and Germany calls for proposals
Materials Ontology & Knowledge graph

- Created an **ontology** and **knowledge graph** that provide accessibility and compatibility between parallel material standards and provide a platform for data storage and search, customized visualization, and machine learning tools for material discovery and design.
- The initial Nanomine knowledge graph for polymer nanocomposites has been deployed: https://materialsmine.org/wi/home
- Extension to metamine ontology and generalization to materials ontology ongoing
- Presented at Federated KBs & the Open Knowledge Network Workshop at AKBC 2019: "A Provenance-Aware Knowledge Graph Framework for Open Knowledge Network Settings."
- **NanoMine Schema: A Data Representation for Polymer Nanocomposites**, APL Materials, 2018, doi.org/10.1063/1.5046839
- PIs: Brinson, McGuinness, Chen, Schadler, Rudin, Daraio, McCusker
Acknowledgements

- VIMMP: received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 760907
- MarketPlace: received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 760173
- Oyster: received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 760827

https://vimmp.eu/
https://www.themarketplace-project.eu/
http://www.oyster-project.eu/