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Abstract: The use of small Unmanned Aircraft Systems (sUAS ) as platforms for data capture has1

rapidly increased in recent years. However, while there has been significant investment in improving2

the aircraft, sensors, operations, and legislation infrastructure for such, little attention has been paid3

to supporting the managment of the complex data capture pipeline sUAS involve. The following4

outlines a community engagement based investigation into what tools, practices, and challenges5

currently exist for particularly researchers using sUAS as data capture platforms. The key results of6

this effort are (1) a representation of the key characteristics sUAS captured data both share and have7

uniquely when compared to traditional remote sensing data, and (2) based on these characterists and8

community input we define 8 challenges that need to be addressed in order for the full value of sUAS9

captured data to be realised. We conclude that it is worth while for the community to address these10

challenges given current industry trends, the potential increase in value of sUAS captured data such11

would enable, and the anticipated immediate and future costs of not doing so.12

Keywords: sUAS; drone; RPAS; UAV; Data; Management; FAIR; Community; standards; practices)13

1. Introduction14

Small Unmanned Aircraft Systems sUAS — also known as Remotely Piloted Aircraft Systems15

(RPAS), Unmanned Aerial Vehicles (UAV), or often colloquially as ‘drones’ — are rapidly becoming16

a ubiquitous tool for data collection across a wide range of private and public applications17

worldwide. This includes multiple academic fields (electrical, chamical, and civil engineering; multiple18

environmental sciences; and others) for which sUAS are changing how and which data are captured.19

While this new platform shares much with traditional remote sensing and a range of other sensor20

systems, the particular combination of spatiotemporal resolutions, operational practices, and wide21

spectrum of heterogeneous data being collected with sUAS has lead to a unique set of data management22

challenges. Additionally, various global efforts and technological advances in the sphere of data23

management are opening unique opportunities and potential for sUAS as a nascent technology for24

environmental sensing.25

This paper compiles 4 years of extensive community engagement around the complexities,26

nuances, and importance of sUAS data management; and seeks to lay the motivations and foundations27

for future global sUAS user community engagements.We do so by: (1) outlining the potential value28

gains of normalising good data management practices for sUAS collected research data, (2) detailing29

the unique complexities of sUAS data while pointing to analogous sectors and existing resources that30
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might be leveraged, and (3) map out the key challenges and needs - identified by the community - as31

necessary to realising the full value potential for sUAS data. Henceforth we will use “sUAS data” to32

refer to the primary research data captured on-board sUAS , rather than just data relating to the sUAS33

platform itself. In many cases the former requires and therefore includes the latter.34

To provide context for later sections, the remainder of this section outlines the current state of35

sUAS use in academia and the corresponding state of sUAS data management. Following which,36

Section 2 details the authors’ engagement with the global community on this topic. Section 2 aims37

to: summarise what methods of community engagement were undertaken including detailing which38

geographical regions and domains of expertise were included; and to highlight others working in this39

space and the resources that are currently available through such. Drawing on the outcomes of this40

engagement, Section 3 presents the core characteristics of sUAS captured data which are behind the41

need for sUAS specific data management practices and infrastructure. Finally, Section 4 discusses the42

community distilled key challenges arising from Section 2and 3, before Section 5 concludes.43

1.1. Current use of sUAS in research44

The rapid adoption of sUAS for scientific data collection has been driven largely by the flexible45

functionality now possible due to key technological advances: lowered hardware costs, increased46

battery energy density, wide spread sensor miniaturisation, and the availability of sophisticated47

autopilot hardware and software. Lagging but globally following these technological advances, have48

been new national and international aviation regulations [1]. Collectively, the above mean it is now49

possible and highly attractive for even small and modestly funded research teams to incorporate sUAS50

data into their investigations.51

As platforms for scientific data collection, sUAS offer several functional advantages when52

compared with many traditional methods: (i) the ability to collect higher spatial and or temporal53

resolution data; (ii) a reduced impact on sensitive environments being monitored; (iii) lowered risks to54

workers and equipment involved in data collection in dangerous environments; (iv) a highly flexible55

platform from which an extremely wide range of parameters might be monitored simultaneously,56

and (v) access to many data that what would otherwise be practically inaccessible, all (vi) often at57

a significantly lower cost than traditional methods might incur [2–4]. sUAS data-sets are therefore58

generally parameter rich and uniquely high resolution data-sets, that consequently potentially offer59

unique and novel reuse value across multiple academic, commercial, governmental, and non profit60

use cases.61

The value of these advantages to primary data users is clearly evident in the number and domain62

variety of recently published peer-reviewed articles that include various terms for sUAS (see Figure 163

and 2). And this growth is more than matched by the commercial sUAS sector, with some forecasts64

estimating a market value of USD 100 Billion in the next few years [5–8]. This non-research market is65

driving the rapid advancement of sUAS : flight platforms, sensor miniaturisation, wireless telemetry,66

sophisticated autonomous navigation, operations, and legislation; to meet the needs of commercial67

sUAS use in: Agriculture, Mining, Civil Engineering and Infrastructure, Search and Rescue and68

Disaster Responses, Cargo and Data Delivery, Conservation, Entertainment, and many more use cases.69
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Figure 1. sUAS publications in web of science through 2018: As sUAS have become more prevalent as
platforms for scientific data collection, there has been a corresponding increase in their prominence
within the academic peer-reviewed literature. This chart shows this growth in blue, with the number
of publications found in a Web of Science literature search on the topic of sUAS . By comparison, the
number of sUAS publications that also referenced the management of data, is shown in orange at a
much lower rate. Graph generation including the list of search terms are included in footnote 1

1 Bar: add search information when updated to 2019
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Figure 2. Percent publications in the 15 most prominent Web of Science research areas through 2016:
Based on the same search terms as Figure 1, this categorises the total number of publications returned
into the academic field under which they were published through 2016. Graph generation including
the list of search terms are included in footnote 2

These advances are being made across and through novel and developing commercialisation70

models as the industry evolves. As a result commercial models include the sale of both products71

and services, and both proprietary and well matured and diverse open source sUAS solutions. For72

researchers, each of these models offers a variety of value trade-offs; between fully customisable and73

scientific purpose built solutions with full access to all metadata at the cost of their own development74

effort and time, through to less configurable but ready to fly platforms, or even full data capture and75

analytics services. The latter generally also involves higher but arguably justifiable monetary costs,76

and provide less contextual information with their data but are easily and rapidly deployed.77

1.2. Current sUAS data management78

Research data management infrastructure and procedures have always been important but have79

become more complex and costly as the quantity of available data has significantly increased [9,10].80

Why and how sUAS data management is critical to realising its full value is an outcome of this81

engagment discussed in more detail in Section 3, however, sUAS users who have attempted to publish82

their data are familiar with why it is also particularly challenging. A typical sUAS -based project,83

for instance, will involve multiple stakeholders (e.g. scientists, engineer, pilot), technologies (e.g.84

sUAS , controllers, computers, software systems, sensors, paper notebooks), parameters (e.g. flight85

platform attitude, scientific sensor calibration date and processes, scientific parameters, comensual86

environmental conditions), and complex processes (e.g. data triage, data compression, data pre- and87

post- processing), many of which can impact a data-sets interpretation. Capturing multiple of these88

disparate components is commonly necessary for initial data product generation and interpretation,89

2 Bar: add search information when updated to 2019
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many will be required for data publication, and an even larger superset would be required by a user90

seeking to reuse the data in a future investigation. Unfortunately, as indicated scholarly and scientific91

sUAS users represent a relatively small user market with niche needs. Consequently the challenge92

of sUAS data management have not yet been widely addressed either by industry stakeholders or93

researchers who are largely still exploring sUAS capabilities and potential value.94

As a result, individual researchers out of necessity are developing their own ad hoc data95

management strategies. However, this is problematic in the long term for multiple reasons. First,96

this substantially adds to the learning curve of sUAS technologies: new-to-sUAS researchers must97

already navigate complex legal, technical, and institutional spaces, and developing a data management98

strategy from scratch further increases the required overhead. For researchers specifically seeking to99

take advantage of sUAS as a new and otherwise more affordable means of data capture, the economic100

and time costs of developing robust data management workflows can be prohibitive.101

Second, the repeated reinvention of ad hoc data management workflows represents a significant102

amount of effort. Not only is this an inefficient use of finite research resources, but these idiosyncratic103

workflows pose a roadblock to the development of common tools and workflows. However, lacking104

a collective articulation of data management requirements, there is no alternative even for those105

motivated to collaborate on the development of common better commercial and open source software106

and tools meaning the roadblock will only continue to grow.107

Third and finally, the lack of common data practices risks lowering the trustworthiness and108

reproducibility of Scientific research based on sUAS data. Without shared data practices and methods109

of documenting workflows, sUAS data based research is often plagued by poor or heterogeneous110

documentation, unknown or unstandardized quality control methods, and methodological uncertainty.111

The current opacity of sUAS data workflows makes thorough peer review extreemly difficult.112

1.3. Opportunities for sUAS data management113

The described landscape presents a problematic picture, yet the rapid growth of sUAS as a114

revolutionary sensor platform across multiple sectors has arrived at a highly opportune moment. Key115

developments and shifts in social, political, and particularly academic attitudes worldwide present116

a unique opportunity to the sUAS user community - one that has not been available for many other117

research technologies. Specifically, the coincidence of the following present an opportunity: (i) the push118

for open science and FAIR (Findable Accessible Interoperable Reusable) [9] data, (ii) the corresponding119

maturing of data technologies, and (iii) the lack of momentum behind any substandard normalised120

practices and the minimal amount of legacy sUAS data currently available that would otherwise121

require significant effort to migrate or reprocess. The following elaborates on each of these.122

1.3.1. The push for Open Science and FAIRness123

At the same time as sUAS are emerging as a standard tool for researchers, the broader research124

community is building momentum in actively moving towards normalising open science and FAIR125

data practices. This is evidenced by the wealth of work calling for better research practices [11–14];126

the numerous calls for improving reproducibility and cross disciplinary data use through better127

practices[15–18]; and the many non-academic calls for data sharing from a range of government bodies128

[19–21]. The significant traction that the FAIR nomenclature has gained - as a succinct framing of core129

good data management practices - demonstrates this momentum further [22–24].130

1.3.2. The Corresponding Maturation of Data Technologies131

As industry has moved to extract economic advantages from Big Data, the technologies required132

to manage, manipulate, and mine value in large and heterogeneous, data-sets of mixed quality133

have significantly matured [25–27]. The breadth of associated tools available is extremely wide134

but a few high visibility relevant examples include; the growth in capabilities and use of cloud135

resources[28–31], Google’s beta Data-set search engine [32] and the required enabling data-set schema,136
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the international Earth and space science community’s effort to develop standards that will connect137

researchers, publishers and data repositories[33,34], and the increase in efforts to utilise Machine138

Learning tools on classical Big Data for a multitude of applications including the Geo-sciences[35,36].139

1.3.3. The lack of norms or legacy sUAS data140

The lack of community accepted best practices for sUAS data management is both a challenge141

and an opportunity. As a new technology, researchers are still grappling with how best to use sUAS142

. This provides a window of opportunity within which: (a) with little past effort to be discarded on143

previously used methods, the cost of adopting new practices is minimal, and (b) with the net quantity144

of sUAS captured scientific data still relatively small, the cost of adopting new formats, metadata145

standards, calibration methods — and all of the other crucial components of data archive — will not146

be significantly added to by the need for backwards compatibility or mass re-ingestion and processing147

of previously captured data. This window, however, is closing rapidly, as researchers globally — out148

of necessity — are creating all of these components for themselves in ad hoc and isolated manners,149

and rapidly accumulating data.150

2. Materials and Methods151

In light of the above, over the past 4 years (2015 - 2019), the authors have pursued a wide-ranging,152

largely volunteer based, effort, to engage with the nascent community of researchers using sUAS for153

data collection on challenges of data management. To begin with this involved looking to both the154

emerging sUAS science community and to the many mature analogous domains for applicable best155

practices, and included considering standards and conventions used by large scale government and156

research institutions using both sUAS and more traditional remote sensing technologies. This was157

followed by running multiple workshops and conference sessions with the aim of identifying key needs158

and available resources for sUAS data management. The progression of core engagement meetings159

involved are shown in 3, at each of which we sought input from both academic and commercial160

sUAS users, suppliers, and developers and data management professionals. This process was not161

planned out originally, or for the most part directly funded, but driven by researcher needs, the162

perceived value opportunity, community request, and by which doors opened when knocked on. In163

the following sections the key threads of this engagement are summarised and groups are highlighted164

for the purposes of directing interested parties to possible resources or potential starting points for165

future efforts.166
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2.1. Community engagement167

Q3 Q4 Q1 Q2Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q2 Q2Q3 Q4Q1 Q1

20162015 2017 2018

ESIP0

Drone Cluster formed
Barbieri, Wyngaard

AgGateway11

AgGateway Meeting to
interface and present with
the Precision Ag Council’s

Geospatial Data Group
Barbieri

AGU14

Poster session
Barbieri,
Wyngaard

IDW18

Pushing the boundaries
in science data collection

Wyngaard, Barbieri
RDA19

sUAS
Data IG formed;
blog posted
Barbieri,
Wyngaard

RDA20

Community mvng
fwd on standardizing
sUAS science data
Barbieri

RDA Joint Meeting21

IG Data for Development, IG Ethics & Social Aspects of Data,
IG Small Unmanned Aircraft Systems’ Data, IG Health Data,
IG RDA/NISO Privacy Implications of Research Data Sets
Multiple
speakers

IDW23

Drones4Good, African context
Wyngaard, Barbieri 

IDW pre-event22

Drones4Good
Wyngaard, Motshegwa 

AGU15

Poster session
Barbieri, Wyngaard

NCAR UAS Workshop24

Sessions & formation of
sUAS data GitHub
Barbieri

OPTIMISE EU COST Action12

Science Drone Data Standards
Wyngaard

AMS13

Poster
session
Barbieri

AGU16

Poster session
co-chairs
Barbieri, Wyngaard

ISARRA: Mtng & Flight Week27,28

Integration of sUAS-captured Atmosph...
Barbieri
sUAS in Atmospheric Science Barbieri, et.al.

AGU17

Invited Talk Barbieri

C3DIS26

RPAS and
Earth/Environ.
Sciences GIS
Data
Wyngaard

VOCamp25

Develop an
Ontology Design
Pattern for sUAS data
Vardeman, Thomer, Adams,
Barbieri, Wyngaard

ESIP1

Drones:
Navigating the
New Frontiers of Data
Collection and Management
Wyngaard, Barbieri

ESIP2

Drones: Explore the Landscape
Corbett, Barbieri, Barberie

ESIP3

Frontiers in Ag. & Energy Data
Collection & Application
Barbieri

ESIP-NASA4

Review of sUAS Use in Earth Science
(NASA Goddard UAV Summer Internships)
Bhakta, Teng

ESIP5

UAS in Agriculture
Teng

ESIP8

Applying Semantic Tech to sUAS Data
Joint session between Semantic Web and
Drone Clusters
Thomer, Barbieri, Wyngaard

ESIP10

Minimal Information
Framework for sUAS
Thomer, Wyngaard

ESIP7

sUAS Data Mgmt
Workshop-Hackathon
1-day event
Muliple speakers

ESIP-NASA6

Review of Available sUAS Data
Mgmt Standards & Practices
NASA Goddard UAV Summer Internships
Edmonds, Teng

UPSiE Webinar9

Opportunities, Challenges, and Progress
in Managing the sUAS/RPAS
Wyngaard, Thomer, Barbieri

Interest Group sessions bringing 
together international sUAS users 
and data professionals in the 
context of commercial and 
academic sectors 

RDA: sUAS Data Interest Group
2017 – present

Drone Cluster sessions bringing 
together North American, and 
particularly federal agency, sUAS 
users and data professionals in the 
context of commercial and 
academic Earth Sciences

ESIP: Drone Cluster
2015 – present

Other hosting organization

Figure 3. This timeline summarise the events the authors have used to engage with governmental
organisations, commercial sUAS platform and tool providers, academic scientists, and both commercial
and academic data professionals.How do we want to do citations for this - could list urls right here in
caption like footnotes/or add them to the full reference list. The latter, however, will mean significant
edits to the diagram are requiredany time we change any citation in the whole doc....

2.1.1. Earth Science Information Partners Federation168

This effort was originally born out of a perceived need within the Earth Science Information169

Partners (ESIP) Federation that resulted in the creation of the Drone Cluster[37] in 2015. ESIP is “an170

open, networked community that brings together science, data and information technology practitioners. ESIP is171

supported by NASA, NOAA, USGS, OGC, and 110+ member organizations” [38]. Since then this cluster172

has run multiple sessions at ESIP meetings, hosted interns, and produced prototyping projects[39,40].173

At the 2017 Summer ESIP meeting, the cluster held a 1-day workshop on sUAS data where individual174

researchers and representatives from multiple commercial (ESRI, DJI, SenseFly, OGC), and federal175

(NASA, NIST, NOAA, USGS) organisations attended and presented on their perspectives on sUAS176

data management approaches[41].177

2.1.2. Rsearch Data Alliance178

To engage a more global community (ESIP is a largely North American based organization),179

in late 2016 a sUAS Data Interest Group (IG) [42] was chartered within the Research Data Alliance180

(RDA). RDA is a multinational organisation funded to “...build the social and technical bridges that enable181

open sharing of data.” [43]. Since review and endorsement, the IG has held sessions at each of the182

biannual RDA plenaries; through these efforts, it has been possible to initiated working relationships183

with multiple other RDA groups pioneering technological, legal, political, and ethical efforts in the184

global push for better open data practices and tooling. Further, as an international organisation with185
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annual meetings in both North America and the European Union, it has been possible to engage with186

a geographically far larger distribution of researchers.187

2.2. Additional key events and communities:188

Through and beyond the RDA and ESIP, this effort has been privileged to engage constructively189

with multiple groups who are examining issues related to sUAS data. In many cases these groups190

are creating resources of value to the broader community, while others are exemplars for the sUAS191

community to look to for guidance and foundations. The following seeks to highlight some of these192

for two reasons: (1) to facilitate greater collaboration within and across domains where groups have193

developed a resources others might reuse and build on, and (2) to propose possible foundational194

building blocks from existing analogous efforts. It should be noted, however, that this list is not a195

complete set of all relevant parties, and is biased by (a) the practical limitations of who the volunteer196

based ESIP and RDA efforts were able to reach, and (b) by the fact that in many cases those doing197

notable work simply do not currently have any public facing instance of such . Regardless of these198

limitations, Figure 4 summarises which organisations and community groups have been key in199

identifying particular challenges to sUAS data management, and the following sections briefly200

highlight some of the key community groupswe suggest are worth future reference and further201

engagement.202
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Figure 4. The above diagram is a summarised view of the many different communities the authors
have interacted with in considering sUAS data management. Additionally, it calls out the eight key
challenges to sUAS data management that this paper seeks to highlight. These eight challenges are
discussed in detail in Section 3, but are listed here in order to point to the primary sources for such.
Each community, organisation, and field listed here has served to call out these needs through reports,
papers, posters, conference sessions, community calls, and a multitude of informal conversations at
various meetings, flying fields, and hallways. The grouping by common discipline, mandate, or role is
an indication of the context within which this effort has engaged with each; but in many cases these
communities and organisations are contributing to multiple fields and act in multiple roles.
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2.2.1. Atmospheric Science203

In February 2017 NCAR’s Earth Observing Laboratory (EOL) hosted a workshop “...to collect204

information about the needs of the NSF funded community in using sUAS for atmospheric research...”.205

While the workshop was focused on key issues other than data management the final report [44]206

emphasises the need for formal sensor qualification research and the creation of standardised use207

procedures, an issue the International Society for Atmospheric Research using Remotely piloted208

Aircraft (ISARRA)[45] is also discussing. For instance, the impact of placement of common atmospheric209

sensors on multirotors on data quality has now been the subject of multiple studies[46,47]).210

2.2.2. Sciences and Industry211

The commercial field of precision Agriculture has been evaluating solutions particularly for212

data analytics and integration from not just drones but also the many diverse sensor streams feeding213

commercial precision farming now. An AgGateway 2017 meeting highlighted these challenges in214

a panel, and commercial sUAS providers (Sensefly) have worked with ESRI and Pix4D analytics215

tool providers to develop defacto standards for image data [48]. The United States Department of216

Agriculture - in addition to hosting a key controlled vocabulary Bar can you add the citation for this,217

also edit this paragraph as you see fit! - additionally is exploring standardised protocols for sUAS data218

capture[49].219

2.2.3. Oceanographic Sciences220

Underwater gliders are an obvious analogous system to sUAS and the oceanographic research221

community has put significant effort into standardising their data management procedures. It may222

consequently serve the sUAS community well to adapt some of their tools and practices to its purposes.223

Key members of this effort include the US Integrated Ocean Observing System (IOOS) who have a224

glider Data Assembly Center (DAC)[50] and have therefore defined a NetCDF standard to which225

glider data submitted to their data archive must adhere. The UK Oceanids command and control data226

system[51,52], alternatively, have a real time web portal interface to deployed science gliders. The227

tool stack created to support this iterface was built to enable the automation of both operations and228

science data analytics (including data quality control and assurance procesesses) and is built largely229

on standards by the Open Geospatial Consortium (OGC) and World Wide Web Consortium (W3C).230

2.2.4. Traditional Remote Sensing231

Large scale data management infrastructure built to manage both large scale and small format232

satellites and manned aircraft are not entirely portable to sUAS applications for various reasons233

discussed in Section 3. However, while many studies continue to explore where sUAS are and are not234

the optimal remote sensing solution; a great deal of traditional remote sensing expertise, knowledge,235

and infrastructure can be drawn on in building infrastructure for sUAS . The clearest instance of236

this is perhaps the use of Photogrammetric techniques in stitching sUAS imagery and the use of237

standardised spectral band processing algorithms and indices for sUAS data interpretation. An238

example of specific knowledge transfer from remote sensing to sUAS is the work by the EU based239

OPTIMISE[53] who have been working on standardised spectral information systems for many years,240

and who have most recently expanded to naturally including practices for sUAS mounted spectral241

sensors. Their engagement with the spectral sensing community, including a in-depth survey of242

optical sUAS practices and community knowledge is ongoing, with initial survey results are available243

in[54]. Similarly the United States Geological Survey, who have extensive experience using manned244

aircraft, have one of the few publicly accessible sUAS data management plans[55] based largely on245

their historical experience and domain knowledge.246

Finally, the ESA and NASA’s culture of making data appropriately open [56,57] and of using or247

publishing open source software [58,59] are arguably models for sUAS to follow. While manned aircraft248
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engineering standards are not commonly directly applicable to sUAS , the development processes,249

decision metrics, and operational practices used are increasingly applicable as sUAS are integrated250

into controlled airspaces. Furthermore, manned aircraft data processing tool stacks are often build251

on widely used standards such as those from the OGC’s Aviation Domain Working Group[60], again252

sUAS would likely do well to follow this example.253

3. Results254

Emmerging from the above described engagement efforts have been two key results: (1) how255

sUAS data are unique and consequently in part require custom management solutions, and (2) eight256

challenges to be addressed in order to access the full potential value of sUAS data.257

3.1. sUAS data are unique and in need of unique managment infrastructure258

sUAS data are uniquely 4+ dimensional259

All sUAS data is associated with a location in both time and 3-dimensional space. While location- and260

time- stamped data are not unusual, multiple streams of simultaneously captured values captured261

from a moving 3-dimensional trajectory at sporadic temporal intervals such as sUAS enable are262

uncommon. Furthermore, to correctly interpert many sUAS data requires additional metadata263

streams, such as the time-series stream of the sUAS attitude, or an instantaneous measure of local264

luminosity. sUAS data is therefore unique for its mandatory 4+ dimensionality: multiple co-captured265

geospatially-tagged measurements of varing precisions, taken within multiple discretised time periods,266

along a 3-dimensional trajectory.267

268

sUAS data provide uniquely high spatiotemporal resolutions269

sUAS are being used in the sciences largely as they are a low-cost way of quickly capturing high spatial270

and temporal resolution data. For instance, spatially, even low cost sUAS can achieve <5cm/pixel271

horizontal ground resolution imagery, and they have the entirely unique ability to sample at similar272

resolutions in fully customised vertical profiles. Further, temporally, sUAS systems may be deployed273

both repeatedly, and dynamically in response to real time changing circumstances, with periodocties274

ranging from minutes to years. This high temporal resolution is most visibly advantageous in the275

use of sUAS in disaster response (e.g wildfires, flooding, or earthquakes), but it is equally useful in276

scientific research that can be subject to both unforeseen changes in long planned observations (e.g277

unpredictable wildlife activity, or unforeseen operational restrictions) and spontaneous opportunities278

(e.g. an unanticipated flooding event of an area of interest). sUAS consequently are providing a279

uniquely high resolution low cost offering that neither manned aircraft systems or satellites — both of280

which require months of planning and very large budgets – nor ground based sensors or other low281

altitude platforms (e.g. kites, balloons) cannot readily offer.282

283

sUAS data are classically Big284

sUAS data are Big in all four of the classic Big Data characteristic ‘Vs’ [61]. The variety in form, function285

and veracity of sUAS data is only limited by current sensor miniaturising technology and regulations,286

but currently commonly includes both low cost and professional grade: multi- and hyper- spectral287

imagery; multiple LIDAR and RADAR sensing technologies; a wide range of gas and particulate288

matter sensors; mechansims for water, genomics, and other physical sample capture; and common289

time series parameters such as temperature, pressure, humidity, and the local characteristics of290

radio frequency signals. The volume of data that spectral sensors particularily can quickly capture291

is nontrivial, with a single flight able to return tens of GB of raw data. And finally the faster sUAS292

mounted sensors can capture quality data, the faster the sUAS can fly, and therefore the larger the area293

and amount of data that can be covered in a single flight, all of which mean sUAS data capture rates294

are most likely to continue increasing in velocities going forwards as technology improves.295

296



Version April 10, 2019 submitted to Remote Sens. 12 of 18

sUAS data are increasingly created by small science297

Large unmanned system technologies such as unmanned planes or underwater gliders have historically298

been accessible only to researchers working at large scale and often government based research299

institutions with the resources to build and maintain large scale research facilities. However, small300

sUAS have made it possible for small and modestly funded teams of researchers to use unmanned301

technologies. The adoption of sUAS technology by these smaller and more ad hoc teams has302

consequences for the management of these data both as it increases the quantity of data being303

captured by researchers overall, and because it increases the need for common practices that cross304

discipline boundaries. Whereas large scale research endeavors (sometimes called big science often have305

correspondingly robust plans and infrastructures for data archiving and management, smaller scale306

teams (sometimes called small science or little science have correspondingly ad hoc and idiosyncratic307

data management practice [62,63].308

3.2. Eight community distilled sUAS data management challenges to be addressed309

1. Sensor use procedures: Sensor specific, tested and qualified use procedural best practices and310

standards are urgently needed in a common language. These best practice methodology and311

procedural guidelines should be developed and provided either by the manufacturer or the312

research community and include: mounting requirements on various platforms, calibration,313

ground truthing, and maintenance procedures, sample rates, flight patterns, and required314

metadata for data use and publication. The need for these is both for user ease and so as315

to enable greater automation in the capture of data provenance. As mentioned existing initial316

work on this issue has already appeared within the atmospheric community [46,47] and the317

Agricultural Sciences[48]. While these procedures, are largely currently not instantiated in open318

machine readable forms, they represent a direction for others to follow and contribute further to.319

2. Operational practices: Having best practices regarding operational protocols for scientific320

research will lower the barrier to entry for new users, allow training materials to be standardised321

for the many new training courses being created, and reduce the burden on operators which322

can only lead to safer operations. Further, while many countries have now begun to settle on323

regulations, many research organisations are still grappling with their own internal policies and324

protocols. Researcher operational best practices, created based on the experience of those who325

have been operating for longer, could serve to accelerate organisational protocol deployment in a326

country agnostic manner. One examples of such that is readily accessible comes from University327

of Exeter ’sRemote Sensing Laboratory [64].328

3. Analytics and Error correction procedures: Best practices and acceptable error tolerances for329

primary sensor taxonomy branches and the associated processes need to be defined so as to330

avoid unintentional — but easy to introduce — errors [65]. These are needed equally by tool331

providers (commercial and open source) so as to allow them to build to a standard, and by user332

community so as ensure correct data interpretation. Defining such will additionally contribute to333

efforts to define sensor use best practices and metadata creation, capture, and archive tooling.334

4. Data and metadata data formats: Guidelines regarding best practice metadata and data formats335

would serve the community, not as any form of restriction, but rather as a simple means of336

reducing workloads for both research sUAS operators and technical developers of: sensors,337

sUAS platforms, and the many components necessary in a data management tool stack. Having338

published recommended open formats based on community experience would similarily lower339

the barrier to novel experiments and enable both open source and commercial developers to340

create reusable tools.341

5. Data and metadata provenance practices: Definitions of what parameters are required to make342

a data value, set, or product reusable – in potentially other scenarios than that for which it was343

originally captured or created – is necessary as both a practical guideline for operations and to344

facilitate the creation of tools to support the automated capture of this provenance.345
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6. Data product levels: Defining suggested data product levels for various data types would346

facilitate both data archives and single researchers in determining what data should be archived,347

at what quality levels, at what resolutions, and with what associated metadata as required for348

likely reuse. This could be done for various primary parameter taxonomy branches, such for349

spectral data captured for Agricultural Sciences, and for atmospheric time series for Atmospheric350

Sciences.351

A crucial and complex sub-component to data product level definitions is the potential ethics352

driven policies that will govern sharing sUAS data. FAIR does not require open access, and353

others are exploring the ethical implications of both FAIR and open data in general [66,67]. Not354

least because of their historical military associations of sUAS but also due to the potential to355

easily violate important privacy restrictions with sUAS mounted sensors, the community needs356

to discuss both locally and internationally, what best practices might be for governing sUAS357

data’s desireable degree and form of openness.358

7. Data management and analytics tools: As shown in 4, many of the relevant organisations359

already have some portion of a sUAS data analytics and management tool stack. However,360

the tools these bodies offer are only sUAS specific in a minority of cases. Rather, the majority361

were developed for other data types and are now being adapted for sUAS . More resources362

and effort are therefore necessary to accelerate these adaptations; and it is note worthy that363

by addressing the above challenges, it would becomes significantly easier for resource pooling364

across development efforts.365

8. Data management education: As the domain grows there is an increasing demand for366

introductory information that properly addresses the multitude of new expertise needed to367

effectively use sUAS . In response many universities and other institutions are beginning to368

formally train research sUAS operators. An acknowledged but core missing component of these369

training curricula is any information on comprehensive consideration for science data good370

practices. Bringing together data management training and sUAS training offers a convenient371

opportunity, but one that depends heavily on investment being made first in the above challenges372

.373

4. Discussion374

As detailed in Section 3, the primary outcomes of engaging with the nascent sUAS community375

are: (a) the identification of how sUAS data are unique and where there are shared characteristics with376

more traditional data capture platforms, and (b) that as a result there are eight community identified377

challenges to improving sUAS data management.378

Regarding how sUAS data are unique, the following should be noted. (1) Though there are many379

geospatial data formats that capture vector and raster data, stationary time series data, and high380

dimensionality data, and while tool stacks exist for processing and managing these data, these tools do381

not currently readily support the particular combination of metadata streams and multiple parameter382

capture sUAS data often consist of or require for correct interpretation. Similarly (2), the high spatial383

and temporal resolutions sUAS data are capable of capturing presents a new complicating factor for384

data management infrastructure. These resolutions require both potentially new multidimensional385

formats, schemas, and ontologies (or at least new workflow tools for handling the novel combination386

of such sUAS data involved), and also demand high processing times, more automated quality control,387

and new data product distribution tools. (3), considering that the majority of tool stacks build for388

BigData assume operation on cloud or at least mains powered computing resources, while the veracity,389

variability, velocity, and volume of sUAS data might be equivalent or even lower than common390

BigData tasks, in many cases the need is for processing of such on low power or low bandwidth391

edge compute devices. And finally, (4) research has shown Andrea - citation?, that the range of data392

practices utilised by smaller teams should be considered a feature rather than a bug; this is because the393

data workflows and practices must be customized to the unique contexts and goals of a given group,394
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project, and organizational structure. Standardized workflows across all smaller research teams are395

neither achievable nor desirable. Consequently, sUAS data management solutions need to be created396

with the necessarily diverse data practices of a small lab researcher specifically in mind, and this is all397

the more so true given the wide spectrum of disciplines sUAS users include.398

Regarding the challenges outlined. As new sensors, sUAS platforms, and analytics techniques399

develop, it is clear that addressing solutions to these challenges will require updates and extensions.400

However, initial efforts on each are the only way to ensure such periodic updates, extensions, and401

community driven maintenance will be plausibly practical, sustainable, and backwards compatible to402

any degree in the long term. Further, by initiating the development of solutions to any of the following403

in a collaborative manner with a view to long term sustainability, partial solutions will be both404

immediately accessible for use by others and accessible for extension, iteration, and improvement such405

that gradually more complete solutions naturally arise. That is, provided long term maintainability406

and extensiability are considered in initial work.407

5. Conclusions408

The use of sUAS for data capture is increasing rapidly, both for commercial applications and as a409

new platform for data capture for a wide and diverse spectrum of research fields. As a nascent field410

with many avenues of development underway to increase both operational and scientific platform411

maturity, the issue of managing and optimising the data flow from sample to knowledge product has412

not been extensively explored. This paper describes an effort to explore what resources are currently413

available for handling sUAS data, what approaches are currently being used, and where there are414

challenges to fully realising sUAS data’s value. As a largley unfunded effort subject largely to the415

authors abilities to take advantage of opportunities that either arose organically or were comensually416

available, this exploration was not comprehensive. It has, however, engaged with a significant breadth417

of domain users, developers, commercial participants, and analogous mature fields from which sUAS418

might learn. In addition to finite scope, a key limitation in this engagement is that the majority of work419

was done in North America, however, this was not exclusive with 6 out of the 28 formal engagements420

listed occuring elsewhere in the world. To the best of our knowledge this is the only effort to achieve421

the above at any international scale. There are two significant novel outcomes of this work.422

(1) The identification of the combination of characterists that sUAS data commonly exhibit,423

shows that while it shares many trates with more traditional methods of data capture, the combined424

differences mean existing infrastructure as currently developed and deployed is not capable of enabling425

users fully realise the potential value of sUAS data. These primary characteristcs were: (i) sUAS data426

are uniquely 4+ dimensional, (ii) sUAS data provide uniquely high spatiotemporal resolutions, (iii)427

sUAS data are classically Big, and (iv) sUAS data are increasingly created by small science.428

(2) The detailing of eight specific challenges that must be addressed in order for sUAS to become a429

trusted, reliable, and optimally useful data capture platform: (i) Sensor use procedures, (ii) Operational430

practices, (iii) Analytics and Error correction procedures, (iv) Data and metadata data formats, (v) Data431

and metadata provenance practices, (vi) Data product levels, (vii) Data management and analytics432

tools, (viii) Data management education.433

Based on these, we conclude that a conscience and determined effort by a global selection434

of researchers, to openly draft community driven data management best practices for the capture435

and managment of sUAS data, would likely realise many gains and be an important step towards436

supporting the reproducibility and reliablity of drone data research, as well as increasing the reuse437

of sUAS data. In the immediate, it would cost time and effort, but in the very near future it would438

achieve: (i) significantly reduce the total quantity of poorly curated sUAS data likely to otherwise be439

lost in the near future, (ii) minimise the length of what will otherwise be an extended period of partial440

and inadequate data management tooling for sUAS users making operations inefficient over a longer441

period of time than necessar, (iii) allow the community to circumvent the familiar larger and more442

expensive challenges of legacy data rescue and community wide retooling, and retraining, (iv) lower443
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the barrier to entry for researchers entering the field and seeking to produce robust and reusable data.444

(v) enable collaborative rather than disparate and ad hoc building of common sUAS data infrastructure,445

and finally (vi) increase the transparency of sUAS data processing workflows. However, the window446

of opportunity within which to craft such is finite and closing, given the immediate need for data447

tooling and practices and already growing set of sUAS data.448
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