

V1.0 for community review

Software Source Code Identification
Use cases and identifier schemes for persistent software source code

identification

Editor: Morane Gruenpeter

Authors (in alphabetical order):

● Alice Allen, Astronomy Source Code Library & U. Maryland, USA
● Anita Bandrowski - University of California San Diego, USA
● Peter Chan - Stanford University Libraries, California, USA
● Roberto Di Cosmo - Software Heritage, Inria and University of Paris, France
● Martin Fenner - DataCite, Germany
● Leyla Garcia - ZB MED Information Centre for Life Sciences
● Morane Gruenpeter - Inria, Software Heritage, France
● Catherine M Jones - UKRI STFC, UK
● Daniel S. Katz - University of Illinois at Urbana-Champaign, USA
● John Kunze - California Digital Library, University of California, USA
● Moritz Schubotz - swMATH, FIZ Karlsruhe, Germany
● Ilian T. Todorov - UKRI STFC Daresbury Laboratory, UK
● And the participants of the SCID WG (listed in ​Appendix B​)

Contents

Contents

Introduction
About the Software Source Code Identification WG

Definitions
Actors in the scholarly ecosystem
What do we want to identify or the granularity of software?

What is at stake

Use cases

Identifiers schemes
Intrinsic identifier schemes
Extrinsic identifier schemes

Summary of findings

Conclusion

Bibliography

Appendix A - Use Cases Analysis
A.1 Use case: Reproduce an experiment
A.2 Use case: Access the software source code
A.3 Use case: get credit for a software artifact
A.4 Use case: Find software answering a problem

Appendix B - List of working group participants

2

Introduction
Software, and in particular source code, plays an important role in both industrial and academic
research: it is used in all research fields to produce, transform and analyse research data, to
simulate and understand natural phenomena, and is sometimes itself an object of research
and/or an output of research (Clément-Fontaine, 2019).

Unlike research data and scientific articles, though, software source code has only very recently
been recognised as important subject matter in a few initiatives (e.g ​CoSO , EOSC , 1 2

FAIRsFAIR , FORCE11 , Freya , Software Heritage , SSI , WSSSPE , Society of RSE , ReSA3 4 5 6 7 8 9 10

, URSSI and ​more)​ related to scholarly publication and archiving (Abramatic et al., 2018). 11

These initiatives are now working on a variety of plans for handling the identification of software
artifacts.

At the same time, unlike research data and scientific articles, the overwhelming majority of
software source code is developed and used outside the academic world, in industry and in
developer communities where software is routinely either not formally identified or referenced at
all, or is identified and referenced, in practice, through methods that are totally different from the
ones typically used in scholarly publications.

The objective of the Software Source Code Identification Working Group (SCID WG) is to bring
together a broad panel of stakeholders directly involved in software identification.

In this document, with inputs from a broad panel of stakeholders, we document the current
state-of-the-art practice in software identification​, including use cases and identifier
schemes from different academic domains and industry, clarifying and harmonizing the usage
of different identifiers. We hope that this will provide solid ground on which to build
recommendations for the academic community, and help academic and industrial stakeholders
to adopt solutions compatible with each other and especially with the software development
practice of tens of millions of developers worldwide.

1 ​https://www.ouvrirlascience.fr/the-committee-for-open-science/
2 ​https://www.eosc-portal.eu/
3 ​https://www.fairsfair.eu/
4 ​https://www.force11.org/
5 ​https://www.project-freya.eu/
6 ​https://www.softwareheritage.org/
7 ​https://www.software.ac.uk/
8 ​http://wssspe.researchcomputing.org.uk/
9 ​https://society-rse.org/​ - formerly an association - ​https://rse.ac.uk/about/​ - leading to a larger network -
https://researchsoftware.org/
10 ​http://www.researchsoft.org/
11 ​http://urssi.us/

3

https://www.ouvrirlascience.fr/the-committee-for-open-science/
https://www.eosc-portal.eu/
https://www.fairsfair.eu/
https://www.force11.org/
https://www.project-freya.eu/en
https://www.softwareheritage.org/
https://www.software.ac.uk/
http://wssspe.researchcomputing.org.uk/
https://society-rse.org/
https://rse.ac.uk/about/
https://researchsoftware.org/
http://www.researchsoft.org/
http://urssi.us/

About the Software Source Code Identification WG
The SCID WG was spawned at RDA P11 in Berlin from the RDA Software Source Code IG and
the FORCE11 Software Citation Implementation WG, as both had identified the challenge of
software source code identification in the scholarly ecosystem.
These groups decided to create a joint working group under RDA and FORCE11 to involve a
larger audience and to have a broder panel of stakeholders discussing the challenges and
solutions for identification use cases and the different identifiers that are used for software.
The group’s co-chairs are Roberto Di Cosmo, Martin Fenner and Daniel S. Katz.
It was endorsed by RDA’s TAB in October 2018 and kicked-off its activity at RDA P13 in
Philadelphia in April 2019. At first, a survey capturing the state of the art in software source
code identification was sent to the WG.
In October 2019, during the FORCE2019 ​Full day hackathon​ on research software in
Edinburgh, one of the parallel activities was on hacking the identifiers granularity levels.
In March 2020 at RDA VP15, the group held a session on the use cases and identifiers
schemes.
For more information, see the group’s web pages at
https://www.rd-alliance.org/groups/software-source-code-identification-wg​ and the group’s
repository at ​https://github.com/force11/force11-rda-scidwg
Here are the links to the WG activity by chronological order:

- P13 slides:
- https://www.rd-alliance.org/system/files/documents/2019-04-03_RDA-WG.hando

ut.pdf
- ASCL.net making codes discoverable for 20 years

https://www.rd-alliance.org/system/files/documents/RDAPlenary13_SW_IGWGv2
_1.pdf

- State of the art survey:
https://docs.google.com/forms/d/e/1FAIpQLScRoCoJK1E3GDqRSjeirZiBbsL6T-xDi4A9N
JuvTAgeqEwmAg/viewform?usp=pp_url

- FORCE2019 hackathon notes:
-

- VP15
- slides:

https://docs.google.com/presentation/d/1Z7tbpnWn_HyES2pxAyVleNfCDmPBF_
zbxcJ71oYnxD0/edit?usp=sharing

- notes:
https://docs.google.com/document/d/1C3Q-O0FHg9pbVDH35olfhFTEGaZ1nnebBo
Fg_hX1xC8/edit?usp=sharing

4

https://github.com/force11/force11-rda-scidwg/tree/master/hackathon/FORCE2019
https://www.rd-alliance.org/groups/software-source-code-identification-wg
https://github.com/force11/force11-rda-scidwg
https://www.rd-alliance.org/system/files/documents/2019-04-03_RDA-WG.handout.pdf
https://www.rd-alliance.org/system/files/documents/2019-04-03_RDA-WG.handout.pdf
https://www.rd-alliance.org/system/files/documents/RDAPlenary13_SW_IGWGv2_1.pdf
https://www.rd-alliance.org/system/files/documents/RDAPlenary13_SW_IGWGv2_1.pdf
https://docs.google.com/forms/d/e/1FAIpQLScRoCoJK1E3GDqRSjeirZiBbsL6T-xDi4A9NJuvTAgeqEwmAg/viewform?usp=pp_url
https://docs.google.com/forms/d/e/1FAIpQLScRoCoJK1E3GDqRSjeirZiBbsL6T-xDi4A9NJuvTAgeqEwmAg/viewform?usp=pp_url
https://docs.google.com/presentation/d/1Z7tbpnWn_HyES2pxAyVleNfCDmPBF_zbxcJ71oYnxD0/edit?usp=sharing
https://docs.google.com/presentation/d/1Z7tbpnWn_HyES2pxAyVleNfCDmPBF_zbxcJ71oYnxD0/edit?usp=sharing
https://docs.google.com/document/d/1C3Q-O0FHg9pbVDH35olfhFTEGaZ1nnebBoFg_hX1xC8/edit?usp=sharing
https://docs.google.com/document/d/1C3Q-O0FHg9pbVDH35olfhFTEGaZ1nnebBoFg_hX1xC8/edit?usp=sharing

Definitions
Actors in the scholarly ecosystem
In this section, we provide a full list of the actors regarding the software artifact, specifying the
actor’s role, and including examples. Some of the actors were specified in the software citation
principles ​(Smith et al., 2016)​. This list is in alphabetical order.

Archive

Refers to organizations or initiatives aiming to
preserve human knowledge and particularly, in our
case, the preservation of software source code.
They need not be limited to a specific institution or
domain. e.g. SWH, Zenodo.

Citation manager

Refers to organizations or people creating services
or tools for citation management
e.g. Zotero, Mendeley, EndNote.

Collaborative dev. platforms

Refers to platforms where collaborative software development is possible on public or private
repositories. There is no distinction in the version control technology used (git, mercurial, svn,
etc.) e.g. GitHub, Gitlab, Bitbucket.

Curator / librarian / digital archivist

Refers to the people moderating and curating research artifacts or software artifacts in archives,
institutional repositories, or libraries.
e.g. the HAL moderators described in (Di Cosmo et al., 2019)

Funder

Refers to organizations or people funding research using software or directly funding software.
Academic software projects tend to involve support from funding agencies. Funding Agencies
also evaluate the projects and research they are funding.
E.g NSF, NIH, or Wellcome Trust

5

https://www.zotero.org/google-docs/?vfsBZy

Indexer

Refers to a research engine, a service or a person building a catalog and providing access to
the aggregated collection of data regarding links between scholarly research outputs, including
papers, data, and software. One main part of the indexer is adding subject classification and
disambiguation improving findability of software items.
e.g Scopus, Web of Science, Google Scholar, and Microsoft Academic Search.

Institution, research center or university

Refers to organizations employing researchers. Sometimes these organizations are the
copyright holders of the research outputs. These organizations evaluate the researchers and
research artifacts under their supervision.
e.g MIT, ENS, Inria

Institutional, national or domain repository

Refers to a digital archive collecting and preserving the copies of the intellectual outputs of a
specific institution or domain 12

e.g institutional repository, HAL,

Library

Refers to an organization that holds a curated collection of resources. Libraries can provide
emulation services, enabling access and reuse of legacy software. For this report, we will refer
only to libraries collecting software source code.
e.g Stanford Library, Bibliothèque National de France (BNF)

Package manager

Refers to a collection of software tools that are publicly available on an accessible online
platform that facilitates software installation, configuration, upgrade or removal . 13

e.g PyPi, NPM

12 ​Institutional repository,
https://en.wikipedia.org/w/index.php?title=Institutional_repository&oldid=960627744​ (last visited
June 10, 2020).
13 ​Package manager,
https://en.wikipedia.org/w/index.php?title=Package_manager&oldid=953745584​ (last visited ​Apr. 30,
2020​).

6

https://en.wikipedia.org/w/index.php?title=Institutional_repository&oldid=960627744
https://en.wikipedia.org/w/index.php?title=Package_manager&oldid=953745584

Policy maker

Refers to people and organizations in charge of institutional, national or international policies.
e.g institutional committees, the European Commission, National research commissions or
organizations.

Publisher or publication venue

Refers to scholarly publishers disseminating research outputs (articles, data, software or any
other digital object) after peer review. Including journals, conferences, or other named
"collections" created by defined groups under the guidance and rules of a publisher.
It includes journals (e.g JOSS), conferences with artifact evaluation committees (e.g POPL)

Registry

Refers to an organization providing an online catalog of items usually stored elsewhere by
others. Each catalog item describes a software project with a set of metadata.
e.g ASCL, SwMath, SciCrunch, Wikidata

Researcher as a software user (RSU)

We have separated researchers into two categories. This one is for researchers who use
software without taking part in its creation. A researcher can be in both categories in different
situations. Both refer to researchers at all career stages, including students, postdocs, staff
researchers, tenure-track faculty members, professors and non-academic researchers.

Researcher as a software author (RSA)

Refers to researchers in all stages of the researcher’s career as stated above, participating in
the creation of software. A software author can be a research software engineer (RSE), but this
category of actors isn’t exclusively for RSEs. A software author may have contributed in one or
more roles identified in (​Alliez et al., 2020​):

● Design
● Architecture
● Debugging
● Maintenance
● Coding

● Documentation
● Testing
● Support
● Management

7

https://www.zotero.org/google-docs/?MFaryB

Software engineer

Refers to people that take part in the software creation endeavor and can take one of the roles
in the RSA category, without being researchers.

8

What do we want to identify or the granularity of
software?
The first question that comes up when revisiting granularity is, what is software?
From the Cambridge dictionary :
Software is the​ [set of] instructions​ that​ control​ what a​ computer​ does;​ computer​ programs​:
the​ programs​ that you put into a​ computer​ to make it do​ particular​ jobs​:

Yet this definition focuses on the software executable, understandable by the machine. In
research, the emphasis should be on the source code, which is readable by humans and
captures the human knowledge ​(Abramatic et al., 2018)​.

This is why the scope of this WG is source code and we will not address use cases intended for
the usage of the executables or use cases that make use of proprietary software, because we
do not have access to the source code.

Identification target

Before reviewing different technologies in academia or in industry that are used to identify
software artifacts, it is necessary to break down the different meanings behind "software" and
specify the exact target of
identification.
In (Jones et al. 2016), clarifying
which item is being identified is
important since software is
complex and evolving.
Furthermore the landscape of
software projects is vast with
different structures, lifetime
evolution, communities and more
(Aliiez et al., 2019). When it comes
to structure, some projects are
monolithic and some can be a
composition of modules. A
proposition to decompose the
source code of a software project
into different levels of granularity,
is the basis to agree upon the
identifier which could be used with
that item. FIrst we need to agree on the terminology and on the granularity level each target
represents. Note, since different software structures exist, not all have all levels of granularity.

9

https://dictionary.cambridge.org/fr/dictionnaire/anglais/instructions
https://dictionary.cambridge.org/fr/dictionnaire/anglais/control
https://dictionary.cambridge.org/fr/dictionnaire/anglais/computer
https://dictionary.cambridge.org/fr/dictionnaire/anglais/computer
https://dictionary.cambridge.org/fr/dictionnaire/anglais/program
https://dictionary.cambridge.org/fr/dictionnaire/anglais/program
https://dictionary.cambridge.org/fr/dictionnaire/anglais/computer
https://dictionary.cambridge.org/fr/dictionnaire/anglais/particular
https://dictionary.cambridge.org/fr/dictionnaire/anglais/job
https://www.zotero.org/google-docs/?PHNtTT

To do so we will use a granularity level scale from 1 to 10, where 1 is the most global element
and where 10 is the smallest element. Granularity level 1, abbreviated as GL1, is coarse
grained, while granularity level 10, abbreviated as GL10, is fine-grained.

Software project

Granularity level: ​coarse-grained​ (GL1)

A software project can be found on a dedicated landing page or registry on which the project, as
a whole is described. This page gives access to all software modules, versions and download
links to source code or executables. A software project can be sometimes referred to as a
software collection or a software concept ​(Katz et al., 2019)​.
In some cases, identifying the project is needed without any specificity of a sub-module or a
version, for example, when an institution identifies the software developed by its researchers.
At this granularity level it is complicated to identify the source code without identifying a very
long list of artifacts, this is why an extrinsic identifier is recommended.
The software project can be represented as a metadata record in a registry.
A software project can also have the notion of version at a coarse-grained granularity level, e.g
Python 2 and Python 3 (GL2).

Software module

Granularity level: ​medium-grained​ (GL3)

A specific module of a larger software project or collection. Modules were introduced in the late
1960s, also called assembly or package, referring to a software architecture separating
functionalities into smaller interchangeable pieces . A software project can be very complex 14

with many modules (GL3) and even sub-modules(GL4) that can be written and used separately.

Software version

Granularity level: ​fine-grained​ (GL5)

The software artifact is always versioned, this is why the target is a software version. It can have
many instantiations for different environments, but for this document we will only distinguish two
forms:

1. Executable (e.g download link): we will not address this target in the rest of the
document

2. Software source code

14 ​Wikipedia contributors. (2020, April 6). Modular programming. In ​Wikipedia, The Free
Encyclopedia​. Retrieved 15:33, May 19, 2020, from
https://en.wikipedia.org/w/index.php?title=Modular_programming&oldid=949451352

10

https://www.zotero.org/google-docs/?vfsBZy
https://en.wikipedia.org/w/index.php?title=Modular_programming&oldid=949451352

- Dynamic source code or current version ​- The source code can have a dynamic
representation on a collaborative development platform (a.k.a the Github/ Gitlab/
Bitbucket repository). On which the development history is also presented.

- Snapshot- ​a capture of the complete situation in a software repository, including
branches, releases and all the development history. This archived artifact is
specific to Software Heritage and provides access to the complete archived copy
of the development history of a project. (GL5)

- Release​ - a specific version can be shared as a release on a package manager
or as a tar file on a website (GL6)

- Commit / a specific point in development history​ - in a version control system, this
is the mechanism that captures the modifications in each iteration during the
software development. Each commit is signed by the author. (GL7)

- Directory​ - a static version of the source code without the evolution of the
development history. Usually what institutional repositories, libraries and Zenodo
collects.(GL8)

- File​ - a static file in a directory. (GL9)
- Code fragment ​- an implemented algorithm or function represented in a few lines

of code in a static file. (GL10)

Software context

- Complementary artifacts

- Software artifacts that are external to the source code (build scripts, run scripts,
test cases, etc.)

- Documentation (which is external to the source code)

- the software environment (can be a Docker image or other emulation solutions)

- Data​ (input/output data)

- tutorial (Jupyter notebook)

- software images (screenshots)

- Reference publication ​- The article describing the software and source code
Examples:

- the ​IPOL Journal · Image Processing On Line​ publishes articles that contain a 15

peer reviewed software artifact and demo.
- SwMath has the ​standard article ​property identifying the publication describing

the software.
- Documentation (reference manual, build instructions, API calls, README file, etc.)

15 https://www.ipol.im/

11

https://www.ipol.im/

What is at stake
It is important to clearly identify the different concerns that come into play when addressing
software, and in particular its source code, as a research output, that can be classified as
follows:

Archival

● ensure (research) software artifacts ​are not lost;​ they must be properly archived, to
ensure we can retrieve them at a later time

Reference

● ensure (research) software artifacts ​can be precisely identified; ​software artifacts must
be properly referenced to ensure we can identify the exact code, among many
potentially archived copies, used for reproducing a specific experiment

Description

● make it easy to ​discover ​(research) software artifacts; they must be equipped with proper
metadata​ to make it easy to find them in a catalog or through a search engine

Credit

● ensure ​proper credit ​is given​ to authors and contributors ​; research software must be
properly cited in research articles in order to give credit to all that contributed to it

As already pointed out in the literature, these are different and separate concerns.
Establishing proper credit for contributors via citations or providing proper metadata to describe
the artifacts requires a curation process ​(Allen & Schmidt, 2015; Alliez et al., 2020; Bönisch et
al., 2012)​ and is way more complex than simply providing stable, intrinsic identifiers to
reference a precise version of a software source code for reproducibility purposes ​(Alliez et al.,
2020; Di Cosmo et al., 2020; Howison & Bullard, 2016)​. Also, as remarked in ​(Alliez et al., 2020;
Hinsen, 2013)​, research software is often a thin layer on top of a large number of software
dependencies that are developed and maintained outside of academia, so the usual approach
based on institutional archives is not sufficient to cover all the software that is relevant for
reproducibility of research.

12

https://www.zotero.org/google-docs/?MFaryB
https://www.zotero.org/google-docs/?MFaryB
https://www.zotero.org/google-docs/?bq6pLF
https://www.zotero.org/google-docs/?bq6pLF
https://www.zotero.org/google-docs/?ZlEhfs
https://www.zotero.org/google-docs/?ZlEhfs

Use cases
During the lifespan of the SCID WG we collected and analysed a number of use cases, with the
actors and identification targets defined in this document. For each use case we have noted the
facet (Archive, Reference, Describe or Cite). In this section we will list the complete collection of
use cases with a very short summary. In Appendix A, we provide a set of analyzed use cases
that emerged at the RDA VP15 session.

The use cases collection

Actor Use case description Action Identification
target

Archive Identify all the software artifacts I hold Archiving,
referencing

Release and
smaller artifacts

Citation
manager

Curate the software citation entries Credit Project, release

Collaborative
dev. platforms

Provide access to the most recent state of
the software artifact in an online
repository (e.g Gitlab, GitHub) and to its
development history

Accessing Dynamic VCS
online copy

Curator /
librarian /
digital archivist

Catalog and browse the development
history of legacy software source code for
preservation purposes (The Apollo
mission source code is a good scenario
on how making code available on GitHub
isn’t enough for persistence purposes) 16

Archiving Project, release
and smaller
artifacts
depending on the
reference

Data center Identify the software tools we produce to
support the use (e.g., reading, visualizing)
of our data products.

Archiving,
referencing

Archived copy,
specifically
release that
represents the
researcher’s use
of the
tool/package.

Evaluator Measure the importance of department
X’s contribution to software package Y,
relative to other contributors.

Credit Project, module
and release,
specifically

16 https://www.softwareheritage.org/2019/07/20/archiving-and-referencing-the-apollo-source-code/

13

Also classify the overall size (scope and
complexity) of that package.

identifying the
authors and
contributors at

Funder Track the software I funded and see if it
was “published” and how it was used.

Referencing Any item (all
granularity levels)

Indexer Classify software with metadata Describing Project

Institution,
research
center or
university

Measure the impact of the software
developed by us. Who is using this
software?

Referencing Any item (all
granularity levels)

Institution,
research
center or
university

Count the citations of the software. target:
software release, particular version,
organization

Referencing Any item in the
software project

Institutional or
domain
repository

Preserve software that is deposited with
metadata

Archiving,
describing

Release

Library Collect,catalog, preserve software.
Provide necessary environments (in
virtual machines) to run the software.

Archiving,
referencing,
describing,
providing
environments to
run the software

From project to
release in the
software project.

Package
manager

Finding, installing, maintaining or
uninstalling software packages, using a
command to do so

Referencing Release

Policy maker

Publish policies for research products
including software

Referencing Software project

Publisher Create/retrieve identifiers quickly for use
in the paper for all software including
commercial packages.

Referencing,
describing

Any item (all
granularity levels)

Publisher Add software source code or access to
software source code that needs to be
published along with a publication. For

Archiving,
referencing,
describing,

Any item (all
granularity levels)

14

example the journal IPOL (Image 17

processing online) publishes the software
artifact and demo alongside the article.
Recently IPOL started archiving the
software artifacts in Software Heritage.

Credit

Registry Identify and curate the software entries I
hold

Archiving,
referencing,
describing,
credit

Project

Researcher as
a software
user (RSU)

Access and use SSC no longer available
on a collaborative platform

Archiving Snapshot,
release, revision,
directory

RSU Reference SSC used in an article
(McCaffrey algorithm in SageMath 18

detailed in this blog post) 19

Referencing Any item (all
granularity levels)

RSU Search and find appropriate SSC using
rich metadata

Describing Project

RSU Attribute to others their software
contributions to publications (and have the
skills/knowledge to do so).

Credit Any item (all
granularity levels)

 Researcher
as a software
author (RSA)

Reproduce an experiment detailed in an
article (replication studies)

Referencing Release, revision,
directory, file,
fragment of code

RSA Get (and give) credit for research SSC via
correct citations to articles and data

Credit Project

RSA Find the publications that have used (and
referenced) the software packages I
wrote, so that I track the reuse of my
work.

Referencing Release

17 ​https://www.ipol.im/
18swh:1:cnt:c60366bc03936eede6509b23307321faf1035e23;origin=https://github.com/sagemath/sage;lin
es=473-537
19 ​https://msdn.microsoft.com/magazine/ee310028

15

https://www.ipol.im/
https://archive.softwareheritage.org/swh:1:cnt:c60366bc03936eede6509b23307321faf1035e23;origin=https://github.com/sagemath/sage;lines=473-537/
https://archive.softwareheritage.org/swh:1:cnt:c60366bc03936eede6509b23307321faf1035e23;origin=https://github.com/sagemath/sage;lines=473-537/
https://msdn.microsoft.com/magazine/ee310028

RSA Track how my software might relate to
other software (as in versions or
dependencies).

Referencing,
Describing

Project, module,
sub-module and
release

RSA (team
leader)

Ensure that my team members can get
credit for their software development and
that the group’s output can be cited,
re-used and associated with the group.

Credit Project, module,
sub-module and
release

RSA Contribute and improve existing SSC.
As a software developer contributing to a
large scale Open Source project I would
like to have credit for the parts I
contributed.
Understand​ how authorship will be
managed​ at the level of the overall project
and how can I publish (e.g. in a software
journal) my contributions to the overall
project.

Credit Project

Software
engineer

Know if others are using my code, and
whether they are giving me credit or they
are just “copying” it (plagiarism).
Challenges​: here you need a reference
corpus of source code, and sophisticated
tools to track software contributors; there
are tools for this in industry, and we are
working on open source versions at
Software Heritage.

Credit Any item (all
granularity levels)

Software
engineer

Track the provenance of the tools I am
re-using. In this way I can give credit to
others, I know who contact to in case of
doubts on the code I am re-using, and I
know how that code is currently supported
Challenges​:
- rapid evolution of software packages
(incompatibility)
- unique identification of software origin

Referencing,
Credit

Any item (all
granularity levels)

16

 Identifiers schemes

This section presents several identifier schemes that are used in different settings to designate
software artifacts. Some of them are specifically designed for software artifacts, others are
digital identifiers systems that can be used for any kind of object (not necessarily digital ones).
Some of them rely on​ intrinsic identifiers​, computed from the object itself, others rely on ​extrinsic
identifiers​ which are not computed from the object itself, and a registry (centralised or
distributed) that maintains the relationship between identifiers and objects.

We refer the interested reader to ​(Di Cosmo et al., 2018, 2020)​ for an extensive analysis of the
properties of these two classes of schemes.

Intrinsic identifier schemes

Cryptographic Hashes in Distributed Version Control Systems

Version control system (VCS) are essential tools in software development. They are used to 20

control the evolution of a software project, by recording changes made to the source code files,
usually called versions, and providing mechanisms to compare different versions, restore a
previous version, and merge changes from multiple versions.

As shown in the figure above, version control systems have evolved a lot over the last decades,
moving from simple tools that could only operate on a local machine, like RCS, to systems that
relied on a central server to allow concurrent modifications to a large software project, like CVS
or Subversion, and finally to Distributed Version Control Systems (DVCS), that enabled fully

20 See ​https://en.wikipedia.org/wiki/Version_control​ for more information.

17

https://www.zotero.org/google-docs/?QLwRKW
https://en.wikipedia.org/wiki/Version_control

distributed software development, without relying on any central server . Since the beginning of 21

the 2000’s, DVCS have grown extremely popular, in particular because of the broad adoption of
Git.

In order to build DVCS, it was necessary to find a mechanism that allowed any peer in a
distributed development network to identify in the exact same way the same state of the
software project, ​without depending on any registry​, For a single file, the solution was well
known: a cryptographically strong hash can compute from any file a short “​signature​” that
provides an ​intrinsic​ identifier for the file. The extra step needed was a way of getting intrinsic
identifiers not only for a single file, but for a full project, with its completed directory structure.
The key insight to do this comes from the seminal work of Ralph Merkle ​(Merkle, 1987)​, that
showed how one could compute a single, strong cryptographic signature over a tree structure,
by building what is now broadly known as a Merkle tree. This technology is now largely used not
only in DVCS, but also in blockchains and distributed file systems.

The key point to retain from all this for the purpose of this report is the fact that today ​tens of
millions of software developers​ use daily tools that rely on ​intrinsic identifiers​ for software
projects computed along the principles of Merkle trees. These identifiers are often referred to as
“​commit hashes​”, but the notion is more generic than that, as not only commits have identifiers.

Here is an example:

● The Git identifier of the source code of the release 5.6 of the Linux kernel:
7111951b8d4973bda27ff663f2cf18b663d15b48​ (this identifier can be used for
example to access the copy of this source code on GitHub at
https://github.com/torvalds/linux/tree/7111951b8d4973bda27ff663f2cf18b663d15b48​)

These intrinsic identifiers are quite powerful, as they allow not only to identify an object, but also
to verify that the designated object has not been modified: it suffices to recompute the intrinsic
identifier from the object itself to spot any alteration, due to the strong cryptographic properties
of the hash algorithm used (see for example ​(Di Cosmo et al., 2018)​ for more details).

Taken alone, though, such hashes do not allow knowing whether the designated artefact is a
file, a directory, a commit or a release, nor what exact hashing algorithm has been used to
compute them: we depend on external knowledge for that, for example on the fact of knowing
that the identifier is used in the Git version control system.

A slightly more general and structured approach has been adopted for defining SWHIDs, that
are described below.

21 One should not be misled by the popularity of platforms like GitHub, GitLab.com or Bitbucket: these
platforms offer convenient facilities for developer interaction, but for the version control system point of
view, they are just peers in a network of distributed nodes.

18

https://www.zotero.org/google-docs/?E3x7OW
https://github.com/torvalds/linux/tree/7111951b8d4973bda27ff663f2cf18b663d15b48
https://www.zotero.org/google-docs/?u7Kx26

Software Heritage Identifiers (SWHID)

Software Heritage​ is a non profit multi-stakeholder initiative to build a universal archive of
software source code, started in 2015 under Inria’s impulsion, ​in partnership with UNESCO​.
The main goal is to ensure long term access to the source code of all software ever written that
is publicly available. For that reason, the choice of the identifiers for the software artefacts
contained in the archive was of paramount importance. It turned out that the key requirements
were very similar to those identified by Distributed Version Control Systems, and naturally led to
choosing ​intrinsic identifiers​ based on the same principles of Merkle tree signature. A full
discussion of the motivations behind this choice can be found in ​(Di Cosmo et al., 2018, 2020)​.

One key difference between usual hashes used in DVCS and Software Heritage identifiers
(SWHIDs) is the fact that they do not depend on the version control system, if any, used for
maintaining a software artefact: a SWHID can be computed for any software artefact, even if it is
distributed as a package, a zip file, or in any other form.

The full specification is ​available online​. The structure of a SWHID is shown in the figure below.

SWHIDs are URIs, with a clearly defined prefix ​swh​ followed by the version of the hashing
algorithm employed, and a ​tag​ that allows to identify the ​type​ of the object identified, and only
then one finds the intrinsic software fingerprint. In version 1 of the schema this fingerprint is ​fully
compatible with ​git​ intrinsic identifiers​, a property which is extremely convenient for users of this
popular version control system. Additional ​qualifiers​ may be used to provide rich contextual
information about the object (or fragment of object) that is denoted by the identifier. See the
official documentation​ for more details.

19

https://www.softwareheritage.org/
https://www.softwareheritage.org/2017/04/04/raising-awareness-for-software-source-code-preservation-and-access/
https://www.zotero.org/google-docs/?aGHhZ0
https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html
https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html

SWHIDs are supported by the following resolvers:
○ archive.softwareheritage.org

○ n2t.net

○ Identifiers.org

SWHIDs are currently used in the following services:
○ The HAL french national open access repository

○ The swMATH.org registry of mathematical software

○ Wikidata

Full guidelines are available to trigger archival of any publicly available software artefact, with a
particular focus on use in the scholarly world to enrich research articles with SWHIDs that
enhance the reproducibility of the published results: see Save and Reference guide . 22

Tools to verify and independently compute SWHIDs are also readily available, specifically the
swh-identify module . 23

Here are a few examples of SWHIDs (they are clickable, and will be resolved directly), to
simplify the SWHIDs visibility, only the identifier itself is shown, without the complementary
context elements:

● Snapshot​: a capture of the entire Darktable repository (4 May 2017, GitHub): including
all branches, releases and development history up to this point in time

swh:1:snp:c7c108084bc0bf3d81436bf980b46e98bd338453

● Release​: version 2.3.0 of Darktable, dated 24 December 2016

swh:1:rel:22ece559cc7cc2364edc5e5593d63ae8bd229f9f

● Revision​: a commit in the development history of Darktable

swh:1:rev:50d91bdfc94cb9d3aa01634ac0b003d76e799bf1

● Directory​: a directory from the computer game Quake III Arena

swh:1:dir:c6f07c2173a458d098de45d4c459a8f1916d900f

22 ​https://www.softwareheritage.org/save-and-reference-research-software/
23swh:1:rev:b4fbdeb30f02ba3d428b372aef5b904cf2125221;origin=https://pypi.org/project/swh.model/;visit
=swh:1:snp:fd30d9054acb716addee49506465bc5f8043c194

20

https://archive.softwareheritage.org/swh:1:snp:c7c108084bc0bf3d81436bf980b46e98bd338453;origin=https://github.com/darktable-org/darktable/
https://archive.softwareheritage.org/swh:1:rel:22ece559cc7cc2364edc5e5593d63ae8bd229f9f;origin=https://github.com/darktable-org/darktable;visit=swh:1:snp:c7c108084bc0bf3d81436bf980b46e98bd338453/
https://archive.softwareheritage.org/swh:1:rev:50d91bdfc94cb9d3aa01634ac0b003d76e799bf1;origin=https://github.com/darktable-org/darktable;visit=swh:1:snp:c7c108084bc0bf3d81436bf980b46e98bd338453/
https://archive.softwareheritage.org/swh:1:dir:c6f07c2173a458d098de45d4c459a8f1916d900f;origin=https://github.com/id-Software/Quake-III-Arena;visit=swh:1:snp:687ac8cdbfab3b78b7f301abee5f451127f135fc;anchor=swh:1:rev:dbe4ddb10315479fc00086f08e25d968b4b43c49;path=/
https://www.softwareheritage.org/save-and-reference-research-software/
https://archive.softwareheritage.org/swh:1:rev:b4fbdeb30f02ba3d428b372aef5b904cf2125221;origin=https://pypi.org/project/swh.model/;visit=swh:1:snp:fd30d9054acb716addee49506465bc5f8043c194/
https://archive.softwareheritage.org/swh:1:rev:b4fbdeb30f02ba3d428b372aef5b904cf2125221;origin=https://pypi.org/project/swh.model/;visit=swh:1:snp:fd30d9054acb716addee49506465bc5f8043c194/

● Content​: full text of the GPL3 license (which appears in many projects):

swh:1:cnt:94a9ed024d3859793618152ea559a168bbcbb5e2

● Code fragment​: Apollo 11 source code excerpt “Please crank the silly thing around”

(here the additional ​lines ​parameter is visible, since it defines the start and end of the
code fragment)

swh:1:cnt:64582b78792cd6c2d67d35da5a11bb80886a6409;lines=245-261/

When you are browsing the Software Heritage archive, you can find on the right a permanent
red tab called ‘Permalinks’ with the possibility to identify all the artifacts you are viewing with or
without context qualifiers. The image below is a screenshot of the opened tab with the chosen
directory identifier with context of an Ipol deposit : 24

24https://archive.softwareheritage.org/swh:1:dir:9835aec3bced2594603f2f58aa8cd2e58f509ea0;origin=htt
ps://doi.org/10.5201/ipol.2018.236;visit=swh:1:snp:e0674ffb865529b05511808d1ee7ba5d72346009;anch
or=swh:1:rev:fad7a0486bb7a7cfdbb1c28e28a64f2d3f5e0df9;path=/mlheIPOL//

21

https://archive.softwareheritage.org/swh:1:cnt:94a9ed024d3859793618152ea559a168bbcbb5e2
https://archive.softwareheritage.org/swh:1:cnt:64582b78792cd6c2d67d35da5a11bb80886a6409;origin=https://github.com/virtualagc/virtualagc;visit=swh:1:snp:cdcd2bc43331a436e8c659ba93175ef7d7eb339b;anchor=swh:1:rev:4e5d304eb7cd5589b924ffb8b423b6f15511b35d;path=/;lines=245-261/

Extrinsic identifier schemes

ARK (Archival Resource Key)
With no fees, 3.2 billion ARKs have been assigned by 615 institutions to things digital, physical,
and abstract. Resolution is decentralized or, if the provider prefers, centralized via n2t.net.

Assigners choose the form of the identifier (for example, to match up with legacy SVN commit
ids) or they generate new unique opaque strings. For the latter, they can opt for strings that are
long but convenient (eg, generating UUIDs) or compact with check digits (eg, minting Noids).

Each ARK string becomes resolvable when registered with a redirection target URL or when an
ancestor of the ARK is registered to point to a remote resolver. If the remote resolver can deal
with the descendants, it permits one ARK to resolve to millions of descendant ARKs. This is
called the “suffix passthrough” mechanism and is similar to PURL’s “partial redirect” mechanism.
In this way ARKs may be registered either individually or with one ARK registration that can
stand in for millions of ARKs.

An ARK Example

 ark:/12345/b67c89d/sys/io/socket.py

where ​12345​ is the institution, ​b67c89d​ the overall thing, ​/sys​,​ ​/sys/io​, and
/sys/io/socket.py​ are optional subthings, and ​.py​ is an optional variant qualifier.

An ARK such as ​ark:/12345/f98g76​ is best cited in actionable form, eg,

 ​https://n2t.net/ark:/12345/f98g76

ARKs appear in the Data Citation Index, Wikipedia, Wikidata, ORCID profiles, and the Internet
Archive.

22

ASCL-ID

Astrophysics Source Code Library: Registry and repository for source code in astrophysics
started in 1999.
Items registered by authors (or sometimes journal editors or users) or added by ASCL editors
based on their appearing in the astrophysics literature and is assigned a unique ID.

Identifiers are ​ascl:yymm.xxx​, where yy & mm are year & month of addition to ASCL, and xxx
indicates that software was the xxx'th ASCL entry in the month

ASCL is indexed by the ​SAO/NASA Astrophysics Data System​ (ADS) and Web of Science;
entries can be ​cited​ using their unique ASCL identifier
ASCL aims to improve the transparency, reproducibility, and falsifiability of research by making
software source code discoverable and citable.
ASCL initially required code deposit but most software authors were reluctant to deposit code,
because the repository didn’t grow, ASCL dropped the requirement to deposit code, though it
still accepts code deposits. Pointing to software download location is easily done and removes
barriers to growth.
Metadata is regularly curated by an editor who actively performs curation through daily “random
code” posting activity. The curation triggered by a link checker, “suggest a change,” and the
editor corresponds with the authors.
Site link curation
Links are checked with two link checkers, one twice weekly, the other continuously When links
are consistently down for period of time, editor seeks new link Result: Links are consistently
healthy; link health is reported twice weekly on public dashboard

23

http://ads.harvard.edu/
https://ascl.net/wordpress/?page_id=351

DOI (Digital Object Identifier)

The DOI is a persistent identifier supporting standard citation metadata (title, authors,
publication year, publication venue, etc.), and linking to other PIDs.
DOI registration is provided by currently eight DOI registration agencies, who coordinate their
work via the DOI Foundation . The DOI registration agency DataCite is the primary DOI 25

registration agency for registering DOIs for software, DataCite has registered 128,276 DOIs for
software as of March 26,2020. DOI registration agencies in turn work with publishers and
repositories, in the case of software, the majority of DOIs (84%) have been registered via the
Zenodo repository, which is offering a GitHub integration workflow for archiving and metadata
registration since 2014 . 26

Formal software citations using DataCite DOIs
and metadata are still not common in the
scholarly literature, but their number is
increasing, and DataCite is collaborating with
Crossref to exchange this information using
the Crossref/DataCite Event Data service. As
of July 2, 2020 this service has captured
5,219 software citations in the scholarly
literature using DOIs. One random example 27

would be :

● Urai, A. E., de Gee, J. W., Tsetsos, K., & Donner, T. H. (2019). Choice history biases
subsequent evidence accumulation. eLife, 8. ​https://doi.org/10.7554/elife.46331

citing the software :

● Urai, A. (2016). Motionenergy: Motion Energy V1.0. Zenodo.
https://doi.org/10.5281/ZENODO.594505

DOIs not only align well with software citation workflows, but also support linking with other
identifiers, for example the ORCID ID identifier for researchers. If the ORCID ID is included in
the DataCite metadata of the software, and the researcher has given DataCite permission to do
so, DataCite will automatically update the ORCID record of the researcher with the software
record.

25 ​https://www.doi.org/registration_agencies.html
26 Fenner, M., Katz, D. S., Nielsen, L. H., & Smith, A. (2018, May 17). DOI Registrations for Software.
https://doi.org/10.5438/1NMY-9902
27 ​https://api.datacite.org/events?citation-type=ScholarlyArticle-SoftwareSourceCode

24

https://doi.org/10.7554/elife.46331
https://www.doi.org/registration_agencies.html
https://doi.org/10.5438/1NMY-9902
https://api.datacite.org/events?citation-type=ScholarlyArticle-SoftwareSourceCode

Software in ORCID record for https://orcid.org/0000-0002-9247-0530

The software can also be linked to other persistent identifiers, e.g. Crossref Funder IDs for
funding, Research Organisation Registry IDs (ROR) for author affiliations, DataCite DOIs for
datasets, and of course DataCite DOIs, SWHIDs, Arks or ASCL-IDs for other software.

Another key use case for DataCite DOIs for software besides citing and referencing described
above is discovery. The registration of standard metadata in a central registry simplifies
discovery, and DataCite metadata includes a number of metadata fields that help with
discovery, e.g. description, keywords or subject area. This information is not only available via
DataCite APIs and the DataCite Search web interface, but also via the many aggregators who
harvest DataCite metadata.

25

The HAL-ID

The French national open archive (HAL) is an open access repository, designed for the deposit
of different types of research outputs to which a HAL-ID is assigned. The software source code
deposit is possible from September 2018 on all HAL instances with transfer of the source code
into Software Heritage (after the contributors validation).
The user can deposit easily a source code archive (in .zip or .tar.gz formats) alongside required
metadata. For more information about the deposit process here is the​ ​deposit guide​.
The HAL-ID is a persistent identifier to which each version gets a postfix v[x].
Software deposits also get a SWHID generated by Software Heritage after the source code is
transferred. As stated in (Di Cosmo et al. 2019), the HAL-ID is a direct access to the metadata
and answers the attribution use case of the research product, while the SWHID references the
specific source code and answers the reproducibility use case.
In the diagram below, you can see how the deposit mechanism works for a software researcher.

The main added value in the deposit process with HAL is including human moderation and
curation of the content and specifically of the metadata associated with that content. We need to
keep in mind that quality metadata is hard to come by with automated processes, as mentioned
in (Alliez et al. 2019). Insuring quality metadata
behind a registered identifier is key when it
comes to giving credit to authors.
On the metadata record, a citation is suggested
with both identifiers, one for the landing page
on HAL and the other one for the actual
content (the directory on Software Heritage).

26

https://hal.archives-ouvertes.fr/hal-01872189

RRID

Research Resource Identifiers are used mostly in biomedicine, registered via ​SciCrunch​: a
system that aggregates ~25 RRID registries or repositories, such as the antibody registry, or
Addgene repository.
The SciCrunch registry is a listing of low granularity (~GL1) software projects (e.g., SPSS,
ImageJ), services (e.g., core facilities), and data projects (e.g., NeuroMorpoho.org) that may
need to be cited as aggregate entities in the scientific literature.

RRID format:​ ​RRID:SCR_001622​ (SCR = repository code, 001622 = local identifier)
Why register?​ Journals ask authors to do so, and RRIDs are part of ​MDAR​ & ​JATS​ (standards
used by journals)
Where are they?​ Mainly in the methods section (most found within a table of research materials)
Usage​: Started in 2014 with 25 journals, and continues to grow (current ~1000 journals (Most
visible proponents: Cell, Nature, eLife), >20K papers, >200K RRIDs used by authors)

27

https://scicrunch.org/browse/resourcedashboard
https://scicrunch.org/resolver/RRID:SCR_001622
https://osf.io/preprints/metaarxiv/9sm4x/
https://jats.nlm.nih.gov/publishing/tag-library/1.3d1/element/resource-id.html

swMATH-ID

swMATH provides information on software referenced in mathematical publications. This
publication based approach​ uses heuristics to detect software references in the zbMATH
database. In a second step the heuristics results are checked by the human editor and
complemented with false negatives. If a software was detected in the publication the relation
between the software and the article is classified into one of the following two categories. Either
it is an article that mentions the software, e.g., since it was used to derive results, or the article
is a so-called standard article that describes the software or a significant modification of the
software. If the article describes a new software (that did not exist in swMATH before) it will be
added to the swMATH database. To do this the software is identified with a numeric Identifier,
e.g., 825=SageMath
In addition the following metadata will be inserted by the editor:

● Authors
● Description of the software
● Links to the code
● Link to the homepage
● Keywords related to the software

In addition the following information is derived from the
publications related to the software:

● Classification of the software
● Information on citations in mathematical

Publications
The dataset is manually curated and carefully checked
using a test system that is released in a weekly
schedule as a static snapshot. The release date is
shown in the footer of every page on the swMATH.org
homepage.
Currently the swMATH team performs an effort to
establish back and forth linking with:

● Wikidata
● Software Heritage.

While swMATH provides automatically generated links to related software, the heuristics suffer
from the typical drawbacks with machine learning approaches. To establish high quality
well-defined links between software implementing the same algorithm, we are investigating
options building an algorithm database that links between software, publication and algorithm . 28

Please refer to the scientific publications on swMATH for more technical details see (​Bönisch et
al. 2013, Chrapary et al. 2017 and Holzmann et al. 2016)​.

28 ​https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/7579

28

https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/7579

Wikidata entities

The wikidata entities are numeric identifiers prefixed with Q, e.g, ​Q1165184​=SageMath.
The Software class is identified by the entity ​Q7397​ and each software entity is an ​instant of
(​P31​) ​the software class or one of its sub-classes (like ​free and open-source software​).

The information on the version of the software entity is maintained with the property ​software
version identifier​ (​P348​).

An Identifier can be merged to ​remove duplicates

One important drawback is that Wikidata is open to editing by the community without the
curation and supervision of an authority. A possibility to circumvent this drawback would be
maintaining a local Wikibase, which will provide a controlled access environment and flexible
modeling.

There are 3401 “external” identifiers in Wikidata . Amongst these identifiers, you can find the 29

following for software:
● Arch package,
● Debian stable

package,
● Fedora package,
● Free Software

Directory entry
● Freebase,
● Gentoo package,
● Open Hub,
● Quora topic,
● Ubuntu Package,
● swMATH work ID,
● SWH release ID,
● and many more ….

29 ​https://www.wikidata.org/wiki/Wikidata:Identifiers​ retrieved on July 2nd 2020

29

https://www.wikidata.org/wiki/Q1165184
https://www.wikidata.org/wiki/Q7397
https://www.wikidata.org/wiki/Property:P31
https://www.wikidata.org/wiki/Q506883
https://www.wikidata.org/wiki/Property:P348
https://www.wikidata.org/wiki/Help:Merge
https://www.wikidata.org/wiki/Wikidata:Identifiers

Summary of findings
It appears clearly from the discussion that there is not a single solution that fits all use cases.
To clarify the challenge,

Gran
ularit
y
level
(GL)

ID target
Extrinsic identifiers

Intrinsic

identifiers

ASCL ARK DOI HAL URL RRID SwMath Wikidata Hash SWH

entity property

GL1 project X X X X X X X

GL2 project
version

 X X

GL3 module X X

GL4 repository X X X

GL5 repository
snapshot

 X X X

GL6 release X X X X X

GL7 commit X X X X

GL8 directory X X* X X

GL9 file X X

GL10 Code
fragment

 X X

* The HAL-ID when combined with a SWHID can identify also the directory of the source code in its metadata

30

Conclusion
The SCID WG was launched to resolve a crucial matter in citation: which identifier to use?
After the work of the FORCE11 Software Citation WG introducing the Software Citation
Principles (Smith et al. 2016), it was clear that unique identification, persistence and specificity
are important for citation, but there is still a gap between the principles and the reality of the
current state of the art of software identification. During community discussions we agreed that
we need a consensus on terminology and use cases before producing concrete
recommendations on identifiers.

We have come to a consensus on naming the stakeholders and identification targets.
Decomposing the software as a concept to smaller identifiable digital artifacts using a scale for
the granularity level of the digital artifact, which helped in the specification and analysis of the
use cases. We have shown a large panorama of identifiers schemes: both extrinsic and
intrinsic identifiers and designated the identification targets they can cater.

Lastly we have summarized the findings in a complete table matching identifiers schemes to
identification targets, which emphasizes the difficulty to use one identifier for all use cases.
By doing so, we can conclude that a strategy of combining multiple identifiers to cover all the
facets of software is needed to answer the software citation predicament, especially if we wish a
citation to capture the fundamental use cases (discoverability, access, persistence,
reproducibility and reuse).

The next step would be to produce a set of recommendations based on these findings.

31

Bibliography

Abramatic, J.-F., Di Cosmo, R., & Zacchiroli, S. (2018). Building the Universal Archive of Source

Code. ​Commun. ACM​, ​61​(10), 29–31. https://doi.org/10.1145/3183558

Allen, A., & Schmidt, J. (2015). Looking Before Leaping : Creating a Software Registry. ​Journal

of Open Research Software​, ​3​(e15). http://dx.doi.org/10.5334/jors.bv

Alliez, P., Di Cosmo, R., Guedj, B., Girault, A., Hacid, M.-S., Legrand, A., & Rougier, N. (2020).

Attributing and Referencing (Research) Software : Best Practices and Outlook From

Inria. ​Computing in Science Engineering​, ​22​(1), 39‑52.

https://doi.org/10.1109/MCSE.2019.2949413

Bönisch, S., Brickenstein, M., Greuel, G.-M., & Sperber, W. (2012). SwMATH – citations for your

mathematical software. ​journalId:00006143​, ​2012​. ​https://doi.org/10.1007/BF03345852

Bönisch, S., Brickenstein, M., Chrapary H., Greuel G.-M., & Sperber W.(2013). “SwMATH – A

New Information Service for Mathematical Software.” In Intelligent Computer

Mathematics, edited by Jacques Carette, David Aspinall, Christoph Lange, Petr Sojka,

and Wolfgang Windsteiger, 7961:369–73. Lecture Notes in Computer Science. Berlin,

Heidelberg: Springer Berlin Heidelberg. ​https://doi.org/10.1007/978-3-642-39320-4_31​.

Chrapary, H., Dalitz, W., Neun, W., & Sperber W. (2017). Design, Concepts, and State of the Art

of the swMATH Service. ​Math.Comput.Sci.​ 11, 469–481.

https://doi.org/10.1007/s11786-017-0305-5

Clément-Fontaine, Mélanie, Roberto Di Cosmo, Bastien Guerry, Patrick MOREAU, and

François Pellegrini. (2019). Encouraging a Wider Usage of Software Derived from

Research. Research Report. Committee for Open Science’s Free Software and Open

Source Project Group. ​https://hal.archives-ouvertes.fr/hal-02545142

32

https://doi.org/10.1007/BF03345852
https://doi.org/10.1007/978-3-642-39320-4_31
https://doi.org/10.1007/s11786-017-0305-5
https://hal.archives-ouvertes.fr/hal-02545142

Di Cosmo, R., Gruenpeter, M., & Zacchiroli, S. (2018, septembre). Identifiers for Digital Objects :

The Case of Software Source Code Preservation. ​Proceedings of the 15th International

Conference on Digital Preservation, iPRES 2018, Boston, USA​.

https://doi.org/10.17605/OSF.IO/KDE56

Di Cosmo R., Gruenpeter M., Marmol B., Monteil A., Romary L., Sadowska J. (2019, December)

Curated Archiving of Research Software Artifacts : lessons learned from the French

open archive (HAL). 2019.​https://hal.archives-ouvertes.fr/hal-02475835

Di Cosmo, R., Gruenpeter, M., & Zacchiroli, S. (2020). Referencing Source Code Artifacts : A

Separate Concern in Software Citation. ​Computing in Science & Engineering​.

https://doi.org/10.1109/MCSE.2019.2963148

https://hal.archives-ouvertes.fr/hal-02446202

Greuel, Gert-Martin, and Wolfram Sperber. (2014). “SwMATH – An Information Service for

Mathematical Software.” In Mathematical Software – ICMS 2014, edited by Hoon Hong

and Chee Yap, 8592:691–701. Lecture Notes in Computer Science. Berlin, Heidelberg:

Springer Berlin Heidelberg​. ​https://doi.org/10.1007/978-3-662-44199-2_103.

Hinsen, K. (2013). Software Development for Reproducible Research. ​Computing in Science

and Engineering​, ​15​(4), 60–63. ​https://doi.org/10.1109/MCSE.2013.91

Holzmann, H., Runnwerth, M., & Sperber W. (2016). “Linking Mathematical Software in Web

Archives.” In Mathematical Software – ICMS 2016, edited by Gert-Martin Greuel, Thorsten

Koch, Peter Paule, and Andrew Sommese, 9725:419–22. ​Lecture Notes in Computer Science.

Cham: Springer International Publishing.​ ​https://doi.org/10.1007/978-3-319-42432-3_52

Howison, J., & Bullard, J. (2016). Software in the scientific literature : Problems with seeing,

finding, and using software mentioned in the biology literature. ​Journal of the Association

for Information Science and Technology​, ​67​(9), 2137‑2155.

33

https://doi.org/10.17605/OSF.IO/KDE56
https://hal.archives-ouvertes.fr/hal-02475835
https://doi.org/10.1109/MCSE.2019.2963148
https://hal.archives-ouvertes.fr/hal-02446202
https://doi.org/10.1007/978-3-662-44199-2_103.
https://doi.org/10.1109/MCSE.2013.91
https://doi.org/10.1007/978-3-319-42432-3_52

https://doi.org/10.1002/asi.23538

Jones, C. M., Matthews, B., Gent, I., Griffin, T., & Tedds, J. (2017). Persistent identification and

citation of software. ​International Journal of Digital Curation​. Vol 11 Iss 2 104-114.

https://doi.org/10.2218/ijdc.v11i2.422

Katz, D. S., Bouquin, D., Hong, N. P. C., Hausman, J., et al. (2019). Software citation

implementation challenges. ​arXiv preprint arXiv:1905.08674​.

Merkle, R. C. (1987). A Digital Signature Based on a Conventional Encryption Function.

Advances in Cryptology - CRYPTO ’87, A Conference on the Theory and Applications of

Cryptographic Techniques, Santa Barbara, California, USA, August 16-20, 1987,

Proceedings​, 369–378. ​https://doi.org/10.1007/3-540-48184-2_32

Rios, F., Almas, B., Contaxis, N., Jabloner, P., Kelly, H., Chassanoff, A., Potterbusch, M.,

 Work, L. (2018, February 7). ​Report 1: Exploring Curation-ready Software: Use Cases.

https://doi.org/10.17605/OSF.IO/8RZ9E

Smith, A. M., Katz, D. S., & Niemeyer, K. E. (2016). Software citation principles. ​PeerJ

Computer Science​, ​2:e86​. https://doi.org/10.7717/peerj-cs.86

34

https://doi.org/10.1002/asi.23538
https://doi.org/10.2218/ijdc.v11i2.422
https://doi.org/10.1007/3-540-48184-2_32

Appendix A - Use Cases Analysis
The use cases analysis were taken from the VP15 activity and elaborated.

A.1 Use case: Reproduce an experiment

Use case summary

As a researcher I want to reproduce an experiment that I have read about in a paper, including testing
the software parts. This paper can be my own paper, as portrayed in the `10 years reproducibility
challenge` where paper authors are asked to reproduce their own experiment and describe the 30

process.

Actor/s
● author of paper and code,
● researcher who wants to reproduce the

results

Step by step scenario
● Author seeking to have reproducible

code:
○ needs to specify the exact

versions of software that were
used, and how they were used,
perhaps in a methods sections

○ needs to specify (at least)
software environment in
metadata

○ Can specify dependencies and
documentation with build
instructions

● Researcher seeking to reproduce
experiment:

○ needs identifier to access source
code of specific version

○ needs documentation and
metadata on software
environment and dependencies

○ needs identifier and access to
emulated environment (if the
environment is deprecated)

Goal
Reach the same results as the published paper,
using the description provided by the paper itself

Example
Ten Years Reproducibility Challenge
https://github.com/ReScience/ten-years

Target for identifier
Metadata record / ​software source code artifact
/ software executable (with/without container) /

Granularity level (bold selection)
project / collection / repository / branch / ​release​ /
commit​ / ​directory​ / ​ file​ /​ lines of code

Identifiers schemes

ASCL ARK DOI HAL Hash RRID SWH SwMath Wikidata Other:

30 https://github.com/ReScience/ten-years/issues/1

35

https://github.com/ReScience/ten-years

Challenges with reproducibility use case:

● Identifying the specific software that was used (version, packages, dependencies)
○ Key for this group - need to be able to identify the exact version of the

software
● Documenting how the software was used (inputs, options, environment/platform incl.

compiler and compiler flags, operating system)
○ Can this be made machine-readable/automated?

● If not in a container environment, still executable?
○ Is the container itself going to be (re)usable in X years?

● Can the reproducer obtain the same environment that was used originally? No/yes it
depends - (platform independency?)

○ Is there an emulation solution (and identifier)?
● Is the programming language still supported (like e.g. Python 2.7 and Python 3.0 now).

36

A.2 Use case: Access the software source code

Use case summary
As a researcher as a user (RSU) I want to access the software source code that is described in an
article. Once I can access the source code, I want to know, for instance, whether the license allows me
to build upon this code.

Notes: There is an important difference between repository vs archive; persistent identifiers are aligned
with this use case.

Actor/s
Researcher as a user (RSU)

Goal
Ability to use an identifier to access the content
(here the software source code) of a reference or
a citation in an article.

Examples

An article from 2012 with the original pdf 31

referencing the Gitorious repository (which
disappeared when Gitorious closed) and an
updated pdf with references to content in 32

Software Heritage:
swh:1:rev:0064fbd0ad69de205ea6ec69

99f3d3895e9442c2;origin=https://gi

torious.org/parmap/parmap.git;visi

t=swh:1:snp:78209702559384ee1b5586

df13eca84a5123aa82

Step by step scenario
Researcher as a user (RSU):

● Access the research article
● Determine the availability (i.e., location)

of the corresponding software from the
article itself

● Access the hosting location
● If the hosting location does not include

the source code, get from this location a
link to the source code

● Access the source code together with its
metadata (e.g., authors, contact, license)

● Ideally, examine additional information
such as version, branches, commit
history as that will provide an idea of how
this source code is supported and
maintained

Target for identifier
Metadata record​ / ​software source code artifact
/ software executable (with/without container) /

Granularity level​ (bold selection)
project / collection / ​repository ​/ branch /
release ​/ commit / ​directory ​/ ​file ​/ ​lines of
code

Identifiers schemes​ – any PID scheme that supports persistence of content

ASCL ARK DOI HAL Hash RRID SWH SwMath Wikidata Other:

31 ​Danelutto, M., & Di Cosmo, R. (2012). A “minimal disruption” skeleton experiment: seamless map &
reduce embedding in OCaml. ​Procedia Computer Science​, ​9​, 1837-1846.
https://doi.org/10.1016/j.procs.2012.04.202
32 ​https://www.dicosmo.org/share/parmap_swh.pdf

37

https://archive.softwareheritage.org/swh:1:rev:0064fbd0ad69de205ea6ec6999f3d3895e9442c2;origin=https://gitorious.org/parmap/parmap.git;visit=swh:1:snp:78209702559384ee1b5586df13eca84a5123aa82/
https://archive.softwareheritage.org/swh:1:rev:0064fbd0ad69de205ea6ec6999f3d3895e9442c2;origin=https://gitorious.org/parmap/parmap.git;visit=swh:1:snp:78209702559384ee1b5586df13eca84a5123aa82/
https://archive.softwareheritage.org/swh:1:rev:0064fbd0ad69de205ea6ec6999f3d3895e9442c2;origin=https://gitorious.org/parmap/parmap.git;visit=swh:1:snp:78209702559384ee1b5586df13eca84a5123aa82/
https://archive.softwareheritage.org/swh:1:rev:0064fbd0ad69de205ea6ec6999f3d3895e9442c2;origin=https://gitorious.org/parmap/parmap.git;visit=swh:1:snp:78209702559384ee1b5586df13eca84a5123aa82/
https://archive.softwareheritage.org/swh:1:rev:0064fbd0ad69de205ea6ec6999f3d3895e9442c2;origin=https://gitorious.org/parmap/parmap.git;visit=swh:1:snp:78209702559384ee1b5586df13eca84a5123aa82/
https://doi.org/10.1016/j.procs.2012.04.202
https://www.dicosmo.org/share/parmap_swh.pdf

A.3 Use case: get credit for a software artifact

Use case summary
As a software author, I want to get credit for when my software is used, and to know when it is used
(and for what purpose) as evidence when I apply for funding for future development and maintenance.

Proxies for Credit includes:
● Quality of software as measured by peer review, test coverage, documentation
● Used as dependency by other software packages, including stars and forks
● Number of downloads
● Citations in the literature

Main actor/s
● Software author
● Funding Agency
● Review Panel

Secondary actor/s 33

● Software users
● Code Hosting Platform(s)
● Publications Index

Step by step scenario
Researcher as software author (RSA)

● first define ​who are the software
authors

● add this information to the artifact in an
added metadata file (e.g codemeta.json,
CITATION.cff, AUTHORS or on the
README etc.)

● share the artifact with a software release
with a metadata record

Note that assembling citations for software
identified with multiple PIDs can be problematic.

Goal
Get credit and recognition for my work with the
possibility to count all the citations for my software
and where and how it was used
Example
For software identified with a PID and indexed, the
index provides a means to find and count citations
to that PID, an example on Google scholar with 29 34

citations for version 0.8 of the software:
● Newville, M., Stensitzki, T., Allen, D. B., &

Ingargiola, A. 2014, LMFIT: NonLinear
Least-Square Minimization and Curve-Fitting for
Python, zenodo, doi:10.5281/zenodo.11813

Target for identifier
Metadata record​ / software source code artifact /
software executable (with/without container) /

Granularity level ​(bold selection)
project​ / collection / repository / branch /
release​ / ​commit​ / ​directory​ / ​file​ / ​lines
of code

Identifiers schemes and examples: wherever the authors list is accurate and public

ASCL ARK DOI HAL Hash RRID SWH SwMath Wikidata Other:

33 secondary actors are entities who can provide credit to software authors
34https://scholar.google.com/scholar?cites=13647197374772619471&as_sdt=400005&sciodt=0,14&hl=en

38

https://scholar.google.com/scholar?cites=13647197374772619471&as_sdt=400005&sciodt=0,14&hl=en

A.4 Use case: Find software answering a problem

Use case summary

As a researcher I want to find the software to solve a problem or to advance in my research.
Where do I start?

I can go to wikidata or on another search engine, with a query and get a list of software that
matches my query.

Actor/s
● a researcher as a software user (RSU)

Step by step scenario
● the researcher

○ goes to a search engine (e.g
Wikidata, Wikipedia)

○ enters descriptive properties in
the search box (e.g tags,
description , programming
language, data formats, etc.)

○ the request is transformed to a
sparql query to the wikidata
knowledge graph or other

○ a resulting list of matching
software is returned

○ The researcher chooses an item
from the list

○ lands on the software page
software including the identifier
that might allow other use cases
(access, download, reuse, etc.)

Goal
find the right tool for analysis using semantic
search

Example
Query on Wikidata with a specific identifier:
SELECT ?item ?itemLabel ?value

{

?item ​wdt:P6138​ ?value .
SERVICE wikibase:label {

bd:serviceParam wikibase:language "en,en" }

}

P6138 is a SWHID and the query retrieves all
entities with a SWHID

Target for identifier
Metadata record ​/ software source code artifact /
software executable (with/without container) /

Granularity level​ (bold selection)
project​ / collection / ​repository​ / branch /
release​ / commit / directory / file / lines of code

Identifiers schemes and examples

ASCL ARK DOI HAL Hash RRID SWH SwMath Wikidata Other:

39

Appendix B - List of working group
participants
The use cases analysis were taken from the VP15 activity and elaborated

Ajit Singh
Alejandra Gonzalez-Beltran
Alexandra Delipalta
Alice Allen
Andrea Mannocci
Andrea Dell'Amico
Andrew Treloar
Brian Matthews
Catherine Jones
Christopher Erdmann
Daina Bouquin
Daniel Scharon
Daniel S. Katz
Dawit Tegbaru
Dawn Wright
Doina Cristina Duma
Emmy Tsang
Eric Quinton
Fernando Niño
Fotis Psomopoulos
Geneviève Michaud
Heather Yager
Ian Bruno
Ilian Todorov
Ingemar Häggström
Jamie Lupo-Petta
Janos Mohacsi
Jean-Christophe Malapert
Jenny Thomas
Jeremy Cope
Jonathan Bisson
Jonathan Tedds
Jose Benito Gonzalez Lopez
Joshua Taillon
Julia Collins
Jürgen Knödlseder
larson reever
Leonardo Candela
Lesley Wyborn

Leslie Hsu
Limor Peer
Marieke Willems
Marios Chatziangelou
Mark Leggott
Martin Fenner
Martina Stockhause
Mateusz Kuzak
Mingfang Wu
Minho Lee
Mohammad Akhlaghi
Morane Gruenpeter
Naeem Muhammad
Neil Chue Hong
Pablo Orviz
Paolo Manghi
Paula Martinez Lavanchy
Paula Andrea Martinez
Peter Neish
Peter Doorn
Qian Zhang
Rahul Tomar
Réka Kósa
Rik Janssen
Rob Hooft
Roberto Di Cosmo
Rouven Schabinger
Sam Bradley
Sandor Brockhauser
Sarah Jones
Shahanshah Manzoor
Shelley Stall
Sophie Fortuno
Stefanie Kethers
Stéphane Laurière
Stéphanie Rennes
Stephanie van de Sandt
Susheel Varma
Syeda Tasnim Jannat

Thomas Morrell
Tim Dennis
Timea Biro
Tovo Rabemanantsoa
Violaine Louvet
Volodymyr Kushnarenko
Wendy Hagenmaier

40

https://www.rd-alliance.org/user/18262
https://www.rd-alliance.org/user/1729
https://www.rd-alliance.org/user/14537
https://www.rd-alliance.org/user/18175
https://www.rd-alliance.org/user/3566
https://www.rd-alliance.org/user/15205
https://www.rd-alliance.org/user/90
https://www.rd-alliance.org/user/1066
https://www.rd-alliance.org/user/1906
https://www.rd-alliance.org/user/13858
https://www.rd-alliance.org/user/19009
https://www.rd-alliance.org/user/17475
https://www.rd-alliance.org/user/4300
https://www.rd-alliance.org/user/18078
https://www.rd-alliance.org/user/1048
https://www.rd-alliance.org/user/15702
https://www.rd-alliance.org/user/22295
https://www.rd-alliance.org/user/13310
https://www.rd-alliance.org/user/15392
https://www.rd-alliance.org/user/2253
https://www.rd-alliance.org/user/14996
https://www.rd-alliance.org/user/23124
https://www.rd-alliance.org/user/1290
https://www.rd-alliance.org/user/19603
https://www.rd-alliance.org/user/5294
https://www.rd-alliance.org/user/943
https://www.rd-alliance.org/user/15325
https://www.rd-alliance.org/user/18866
https://www.rd-alliance.org/user/15173
https://www.rd-alliance.org/user/5400
https://www.rd-alliance.org/user/16300
https://www.rd-alliance.org/user/1276
https://www.rd-alliance.org/user/13508
https://www.rd-alliance.org/user/19535
https://www.rd-alliance.org/user/443
https://www.rd-alliance.org/user/15237
https://www.rd-alliance.org/user/11590
https://www.rd-alliance.org/user/1226
https://www.rd-alliance.org/user/5388
https://www.rd-alliance.org/user/2940
https://www.rd-alliance.org/user/6716
https://www.rd-alliance.org/user/15207
https://www.rd-alliance.org/user/12685
https://www.rd-alliance.org/user/1260
https://www.rd-alliance.org/user/7518
https://www.rd-alliance.org/user/137
https://www.rd-alliance.org/user/21688
https://www.rd-alliance.org/user/2694
https://www.rd-alliance.org/user/20001
https://www.rd-alliance.org/user/10342
https://www.rd-alliance.org/user/12022
https://www.rd-alliance.org/user/21812
https://www.rd-alliance.org/user/1944
https://www.rd-alliance.org/user/17801
https://www.rd-alliance.org/user/1430
https://www.rd-alliance.org/user/18146
https://www.rd-alliance.org/user/15193
https://www.rd-alliance.org/user/8724
https://www.rd-alliance.org/user/2867
https://www.rd-alliance.org/user/8663
https://www.rd-alliance.org/user/16265
https://www.rd-alliance.org/user/18658
https://www.rd-alliance.org/user/12823
https://www.rd-alliance.org/user/1528
https://www.rd-alliance.org/user/10238
https://www.rd-alliance.org/user/22114
https://www.rd-alliance.org/user/23156
https://www.rd-alliance.org/user/23533
https://www.rd-alliance.org/user/3362
https://www.rd-alliance.org/user/18215
https://www.rd-alliance.org/user/9929
https://www.rd-alliance.org/user/7811
https://www.rd-alliance.org/user/76
https://www.rd-alliance.org/user/20919
https://www.rd-alliance.org/user/23586
https://www.rd-alliance.org/user/18367
https://www.rd-alliance.org/user/13083
https://www.rd-alliance.org/user/19550
https://www.rd-alliance.org/user/9379
https://www.rd-alliance.org/user/8815
https://www.rd-alliance.org/user/71
https://www.rd-alliance.org/user/16950
https://www.rd-alliance.org/user/18356
https://www.rd-alliance.org/user/17394
https://www.rd-alliance.org/user/2358

